
Design and Implementation

Show me yourflowcharts and conceal your tables, and I shall con-
tinue to be mystijied. Show me your tables, and I won't usually
need your flowcharts; they'll be obvious.

Frederick P. Brooks, Jr., The Mythical Man Month

As the quotation from Brooks's classic book suggests, the design of the data struc-
tures is the central decision in the creation of a program. Once the data structures are
laid out, the algorithms tend to fall into place, and the coding is comparatively easy.

This point of view is oversimplified but not misleading. In the previous chapter
we examined the basic data structures that are the building blocks of most programs.
In this chapter we will combine such structures as we work through the design and
implementation of a modest-sized program. We will show how the problem influ-
ences the data structures, and how the code that follows is straightforward once we
have the data structures mapped out.

One aspect of this point of view is that the choice of programming language is rel-
atively unimportant to the overall design. We will design the program in the abstract
and then write it in C. Java, C++, Awk, and Perl. Comparing the implementations
demonstrates how languages can help or hinder, and ways in which they are unimpor-
tant. Program design can certainly be colored by a language but is not usually domi-
nated by it.

The problem we have chosen is unusual, but in basic form it is typical of many
programs: some data comes in, some data goes out, and the processing depends on a
little ingenuity.

Specifically, we're going to generate random English text that reads well. If we
emit random letters or random words, the result will be nonsense. For example, a pro-
gram that randomly selects letters (and blanks. to separate words) might produce this:

xptmxgn xusaja afqnzgxl 1 h i dlwcd rjdjuvpydrlwnjy

62 DESIGN AND IMPLEMENTATION CHAPTER 3

which is not very convincing. If we weight the letters by their frequency of appear-
ance in English text, we might get this:

id tefoae t cs t rde r j c i i ofdslnqetacp t o l a

which isn't a great deal better. Words chosen from the dictionary at random don't
make much more sense:

pol ydactyl equatori a1 spl ashi 1 y jowl verandah c i rcumscri be

For better results, we need a statistical model with more structure. such as the fre-
quency of appearance of whole phrases. But where can we find such statistics?

We could grab a large body of English and study it in detail, but there is an easier
and more entertaining approach. The key observation is that we can use any existing
text to construct a statistical model of the language as used in that text, and from that
generate random text that has similar statistics to the original.

3.1 The Markov Chain Algorithm
An elegant way to do this sort of processing is a technique called a Markov chain

algorithm. If we imagine the input as a sequence of overlapping phrases, the algo-
rithm divides each phrase into two parts, a multi-word prefix and a single suflx word
that follows the prefix. A Markov chain algorithm emits output phrases by randomly
choosing the suffix that follows the prefix, according to the statistics of (in our case)
the original text. Three-word phrases work well--a two-word prefix is used to select
the suffix word:

set w I and w2 to the first two words in the text
print w , and w 2
loop:

randomly choose w3, one of the successors of prefix w w 2 in the text
print w -,
replace w , and w ;? by w ;? and w
repeat loop

To illustrate, suppose we want to generate random text based on a few sentences para-
phrased from the epigraph above, using two-word prefixes:

Show your flowcharts and conceal your tables and I w i l l be
myst i f ied. Show your tables and your flowcharts w i l l be
obvious . (end)

These are some of the pairs of input words and the words that follow them:

SECTION 3.1 THE MARKOV CHAIN ALGORITHM 63

Input prefix:

Show your
your f lowcharts
f lowcharts and
f lowcharts w i l l
your tab l es
w i l l be
be myst i f ied.
be obvious.

Suffix words tlzat follow:

flowcharts tab l es
and w i l l
conceal
be
and and
myst i f ied. obvious.
Show
(endl

A Markov algorithm processing this text will begin by printing Show your and will
then randomly pick either f lowcharts or tables. If it chooses the former, the cur-
rent prefix becomes your f lowcharts and the next word will be and or wi1 l . If it
chooses tables, the next word will be and. This continues until enough output has
been generated or until the end-marker is encountered as a suffix.

Our program will read a piece of English text and use a Markov chain algorithm to
generate new text based on the frequency of appearance of phrases of a fixed length.
The number of words in the prefix, which is two in our example, is a parameter.
Making the prefix shorter tends to produce less coherent prose; making it longer tends
to reproduce the input text verbatim. For English text, using two words to select a
third is a good compromise; it seems to recreate the flavor of the input while adding
its own whimsical touch.

What is a word? The obvious answer is a sequence of alphabetic characters, but it
is desirable to leave punctuation attached to the words so "words" and "words. " are
different. This helps to improve the quality of the generated prose by letting punctua-
tion, and therefore (indirectly) grammar, influence the word choice, although it also
permits unbalanced quotes and parentheses to sneak in. We will therefore define a
"word" as anything between white space, a decision that places no restriction on
input language and leaves punctuation attached to the words. Since most program-
ming languages have facilities to split text into white-space-separated words, this is
also easy to implement.

Because of the method, all words, all two-word phrases, and all three-word
phrases in the output must have appeared in the input, but there should be many four-
word and longer phrases that are synthesized. Here are a few sentences produced by
the program we will develop in this chapter, when given the text of Chapter VII of
The Sun Also Rises by Ernest Hemingway:

As I started up the undershirt onto his chest black, and big stomach mus-
cles bulging under the light. "You see them?" Below the line where his
ribs stopped were two raised white welts. "See on the forehead." "Oh,
Brett, I love you." "Let's not talk. Talking's all bilge. I'm going away
tomorrow." "Tomorrow?" "Yes. Didn't I say so? I am." "Let's have a
drink, then."

We were lucky here that punctuation came out correctly; that need not happen.

CHAPTER 3

3.2 Data Structure Alternatives

How much input do we intend to deal with? How fast must the program run? It
seems reasonable to ask our program to read in a whole book, so we should be pre-
pared for input sizes of n = 100,000 words or more. The output will be hundreds or
perhaps thousands of words, and the program should run in a few seconds instead of
minutes. With 100,000 words of input text, n is fairly large so the algorithms can't be
too simplistic if we want the program to be fast.

The Markov algorithm must see all the input before it can begin to generate out-
put. so it must store the entire input in some form. One possibility is to read the
whole input and store it in a long string, but we clearly want the input broken down
into words. If we store it as an array of pointers to words, output generation is simple:
to produce each word, scan the input text to see what possible suffix words follow the
prefix that was just emitted, and then choose one at random. However, that means
scanning all 100,000 input words for each word we generate; 1,000 words of output
means hundreds of millions of string comparisons. which will not be fast.

Another possibility is to store only unique input words, together with a list of
where they appear in the input so that we can locate successor words more quickly.
We could use a hash table like the one in Chapter 2, but that version doesn't directly
address the needs of the Markov algorithm, which must quickly locate all the suffixes
of a given prefix.

We need a data structure that better represents a prefix and its associated suffixes.
The program will have two passes, an input pass that builds the data structure repre-
senting the phrases, and an output pass that uses the data structure to generate the ran-
dom output. In both passes, we need to look up a prefix (quickly): in the input pass to
update its suffixes, and in the output pass to select at random from the possible suf-
fixes. This suggests a hash table whose keys are prefixes and whose values are the
sets of suffixes for the corresponding prefixes.

For purposes of description, we'll assume a two-word prefix, so each output word
is based on the pair of words that precede it. The number of words in the prefix
doesn't affect the design and the programs should handle any prefix length, but select-
ing a number makes the discussion concrete. The prefix and the set of all its possible
suffixes we'll call a state, which is standard terminology for Markov algorithms.

Given a prefix, we need to store all the suffixes that follow it so we can access
them later. The suffixes are unordered and added one at a time. We don't know how
many there will be, so we need a data structure that grows easily and efficiently. such
as a list or a dynamic array. When we are generating output, we need to be able to
choose one suffix at random from the set of suffixes associated with a particular pre-
fix. Items are never deleted.

What happens if a phrase appears more than once? For example, 'might appear
twice' might appear twice but 'might appear once' only once. This could be repre-
sented by putting 'twice' twice in the suffix list for 'might appear' or by putting it in
once, with an associated counter set to 2. We've tried it with and without counters;

SECTION 3.3 BUILDING THE DATA STRUCTURE IN c 65

without is easier. since adding a suffix doesn't require checking whether it's there
already, and experiments showed that the difference in run-time was negligible.

In summary, each state comprises a prefix and a list of suffixes. This information
is stored in a hash table, with prefix as key. Each prefix is a fixed-size set of words.
If a suffix occurs more than once for a given prefix, each occurrence will be included
separately in the list.

The next decision is how to represent the words themselves. The easy way is to
store them as individual strings. Since most text has many words appearing multiple
times, it would probably save storage if we kept a second hash table of single words,
so the text of each word was stored only once. This would also speed up hashing of
prefixes, since we could compare pointers rather than individual characters: unique
strings have unique addresses. We'll leave that design as an exercise; for now, strings
will be stored individually.

3.3 Building the Data Structure in C
Let's begin with a C implementation. The first step is to define some constants.

enum I
NPREF = 2 , /* number o f p r e f i x words */
NHASH = 4093, /a s i z e o f s t a t e hash t a b l e a r ray */
MAXGEN = 10000 /* maximum words generated */

3 ;
This declaration defines the number of words (NPREF) for the prefix, the size of the
hash table array (NHASH). and an upper limit on the number of words to generate
(MAXGEN). If NPREF is a compile-time constant rather than a run-time variable, storage
management is simpler. The array size is set fairly large because we expect to give
the program large input documents, perhaps a whole book. We chose NHASH = 4093
so that if the input has 10,000 distinct prefixes (word pairs). the average chain will be
very short, two or three prefixes. The larger the size, the shorter the expected length
of the chains and thus the faster the lookup. This program is really a toy, so the per-
formance isn't critical, but if we make the array too small the program will not handle
our expected input in reasonable time; on the other hand, if we make it too big it
might not fit in the available memory.

The prefix can be stored as an array of words. The elements of the hash table will
be represented as a Sta te data type, associating the S u f f i x list with the prefix:

typedef s t r u c t S ta te State;
typedef s t r u c t S u f f i x S u f f i x ;
s t r u c t S ta te { /* p r e f i x + s u f f i x l i s t */

char *p re f [NPREF] ; /* p r e f i x words */
S u f f i x asuf; /* l i s t o f su f f i xes */
Sta te *next; /a next i n hash t a b l e */

3 ;

66 DESIGN AND IMPLEMENTATION CHAPTER 3

s t ruc t Su f f i x { /* l i s t o f su f f i xes */
char *word; /* s u f f i x */
Suf f i x *next; /a next i n l i s t o f suf f ixes a/

1;

State *statetab[NHASH] ; /* hash tab le o f states */

Pictorially, the data structures look like this:

statetab:

We need a hash function for prefixes, which are arrays of strings. It is simple to
modify the string hash function fmm Chapter 2 to loop over the strings in the array,
thus in effect hashing the concatenation of the strings:

/a hash: compute hash value f o r array o f NPREF s t r ings */
unsigned i n t hash(char *s [NPREF])
f

unsigned i n t h;
unsigned char *p;
i n t i;

h = 0;
f o r (i = 0; i < NPREF; i++)

f o r (p = (unsigned char *) s [i] ;
h = MULTIPLIER * h + *p;

return h % NHASH;
1

A similar modification to the lookup routine completes the implementation of the
hash table:

SECTION 3.3 BUILDING THE DATA STRUCTURE IN c 67

/* lookup: search for prefix; create i f requested. */
/* returns pointer i f present or created; NULL i f not. */
/* creation doesn't strdup so str ings mustn't change l a t e r . a/
State* lookup(char *prefix[NPREF] , i n t create)
1

i n t i , h;
State *sp;
h = hash(prefix);
for (sp = statetab[h]; sp != NULL; sp = sp->next)

fo r (i = 0; i < NPREF; i++)
i f (strcmp(prefix[i] , sp-bpref [i]) != 0)

break;
i f (i == NPREF) /* found i t a/

return sp;
1
i f (create) (

sp = (State *) emall oc(si zeof (State)) ;
for (i = 0; i < NPREF; i++)

sp->pref [i] = prefix[i] ;
sp->suf = NULL;
sp->next = statetab[h] ;
statetab[hl = sp;

1
return sp;

1
Notice that 1 ookup doesn't make a copy of the incoming strings when it creates a new
state; it just stores pointers in sp-bpref [I. Callers of lookup must guarantee that the
data won't be overwritten later. For example, if the strings are in an I/0 buffer, a
copy must be made before 1 ookup is called; otherwise, subsequent input could over-
write the data that the hash table points to. Decisions about who owns a resource
shared across an interface arise often. We will explore this topic at length in the next
chapter.

Next we need to build the hash table as the file is read:

/* build: read input, build prefix table a/
void build(char *prefix[NPREF] , F I L E *f)
1

char buf [100], fmt [lo] ;
/a create a format s t r ing; %s could overflow buf */
sprintf (fmt, "%%%dsn, sizeof (buf)-1) ;
while (fscanfcf, fmt, buf) != EOF)

add(prefi x, estrdupcbuf)) :
1

The peculiar call to sprintf gets around an irritating problem with fscanf, which
is otherwise perfect for the job. A call to fscanf with format %s will read the next
white-space-delimited word from the file into the buffer, but there is no limit on size:
a long word might overflow the input buffer, wreaking havoc. If the buffer is 100

68 DESIGN AND IMPLEMENTATION CHAPTER 3

bytes long (which is far beyond what we expect ever to appear in normal text), we can
use the format 9699s (leaving one byte for the terminal '\O'), which tells fscanf to
stop after 99 bytes. A long word will be broken into pieces, which is unfortunate but
safe. We could declare

? enum { BUFSIZE = 100);
? char fmt[] = "%99s"; /* BUFSIZE-1 */

but that requires two constants for one arbitrary decision-the size of the buffer-and
introduces the need to maintain their relationship. The problem can be solved once
and for all by creating the format string dynamically with sprintf , so that's the
approach we take.

The two arguments to build are the prefix array holding the previous NPREF
words of input and a F I L E pointer. It passes the prefix and a copy of the input word
to add, which adds the new entry to the hash table and advances the prefix:

/* add: add word t o suffix l i s t , update prefix */
void add(char *prefix[NPREF] , char *suffix)
I

State *sp;
sp = lookup(prefix, 1); /* create i f not found */
addsuffix(sp, suffix);
/* move the words down the prefix a/
memmove(prefix, prefix+l. (NPREF-l)*sizeof (prefix[O])) ;
prefixCNPREF-11 = suffix;

1
The call to memmove is the idiom for deleting from an array. It shifts elements 1
through NPREF-1 in the prefix down to positions 0 through NPREF-2, deleting the first
prefix word and opening a space for a new one at the end.

The addsuff i x routine adds the new suffix:

/* addsuffix: add t o s t a t e . suffix must not change l a t e r a/
void addsuffix(State asp, char *suffix)
C

Suffix *suf;
suf = (Suffix *) emalloc(sizeof (Suffix)) ;
suf->word = suffix;
suf->next = sp->suf;
sp->suf = suf;

1
We split the action of updating the state into two functions: add performs the general
service of adding a suffix to a prefix, while addsuffix performs the implementation-
specific action of adding a word to a suffix list. The add routine is used by bui 1 d. but
addsuffix is used internally only by add; it is an implementation detail that might
change and it seems better to have it in a separate function. even though it is called in
only one place.

SECTION 3.4 GENERATING OUTPUT 69

3.4 Generating Output

With the data structure built, the next step is to generate the output. The basic idea
is as before: given a prefix, select one of its suffixes at random, print it, then advance
the prefix. This is the steady state of processing; we must still figure out how to start
and stop the algorithm. Starting is easy if we remember the words of the first prefix
and begin with them. Stopping is easy, too. We need a marker word to terminate the
algorithm. After all the regular input, we can add a terminator. a "word" that is guar-
anteed not to appear in any input:

build(prefix, stdin) ;
add (pref i x . NONWORD) ;

NONWORD should be some value that will never be encountered in regular input. Since
the input words are delimited by white space, a "word" of white space will serve,
such as a newline character:

char NONWORD[] = "\n"; /* cannot appear as real word */

One more wony: what happens if there is insufficient input to start the algorithm?
There are two approaches to this sort of problem, either exit prematurely if there is
insufficient input, or arrange that there is always enough and don't bother to check.
In this program, the latter approach works well.

We can initialize building and generating with a fabricated prefix, which guaran-
tees there is always enough input for the program. To prime the loops, initialize the
prefix array to be all NONWORD words. This has the nice benefit that the first word of
the input file will be the first suflx of the fake prefix, so the generation loop needs to
print only the suffixes it produces.

In case the output is unmanageably long, we can terminate the algorithm after
some number of words are produced or when we hit NONWORD as a suffix, whichever
comes first.

Adding a few NONWORDs to the ends of the data simplifies the main processing
loops of the program significantly; it is an example of the technique of adding sentinel
values to mark boundaries.

As a rule, try to handle irregularities and exceptions and special cases in data.
Code is harder to get right so the control flow should be as simple and regular as pos-
sible.

The generate function uses the algorithm we sketched originally. It produces
one word per line of output, which can be grouped into longer lines with a word pro-
cessor; Chapter 9 shows a simple formatter called fmt for this task.

With the use o i the initial and final NONWORD strings, generate starts and stops
proper1 y :

CHAPTER 3

/* generate: produce output, one word per l ine */
void generateci n t nwords)
{

State .asp;
Suffix *suf;
char *prefix[NPREF] , *w;
i n t i , nmatch;

for (i = 0; i < NPREF; i++) /* reset i n i t i a l prefix */
prefix [i] = NONWORD ;

for (i = 0; i < nwords; i++) {
sp = lookup(prefix, 0) ;
nmatch = 0;
for (suf = sp->suf; suf != NULL; suf = suf->next)

i f (rand() % ++match == 0) /* prob = l/nmatch */
w = suf->word;

i f (strcmp(w. NONWORD) == 0)
break;

printf ("%s\nW , w) ;
memmove(prefix, prefix+l, (NPREF-l)*sizeof(prefix[O]));
prefix[NPREF-l] = w;

1

Notice the algorithm for selecting one item at random when we don't know how many
items there are. The variable nmatch counts the number of matches as the list is
scanned. The expression

increments nmatch and is then true with probability l/nmatch. Thus the first match-
ing item is selected with probability 1. the second will replace it with probability 112.
the third will replace the survivor with probability 113, and so on. At any time, each
one of the k matching items seen so far has been selected with probability l/k.

At the beginning. we set the prefix to the starting value, which is guaranteed to
be installed in the hash table. The first Suffix values we find will be the first words
of the document. since they are the unique follow-on to the starting prefix. After that,
random suffixes will be chosen. The loop calls lookup to find the hash table entry for
the current prefix. then chooses a random suffix, prints it, and advances the prefix.

If the suffix we choose is NONWORD, we're done, because we have chosen the state
that corresponds to the end of the input. If the suffix is not NONWORD, we print it, then
drop the first word of the prefix with a call to memmove, promote the suffix to be the
last word of the prefix, and loop.

Now we can put all this together into a main routine that reads the standard input
and generates at most a specified number of words:

SECTION 3.5 JAVA 71

/* markov main: markov-chain random text generation */
i n t mai n (voi d)
{

i n t i , nwords = MAXGEN ;
char *prefix[NPREF] ; /a current input prefix a/
for (i = 0; i < NPREF; i++) /* s e t up i n i t i a l prefix */

pref i x[i] = NONWORD;
buildcprefix, s tdin);
add (prefi x , NONWORD) ;
generate(nw0rds);
return 0;

1
This completes our C implementation. We will return at the end of the chapter to

a comparison of programs in different languages. The great strengths of C are that it
gives the programmer complete control over implementation, and programs written in
it tend to be fast. The cost, however, is that the C programmer must do more of the
work, allocating and reclaiming memory, creating hash tables and linked lists, and the
like. C is a razor-sharp tool, with which one can create an elegant and efficient pro-
gram or a bloody mess.

Exercise 3-1. The algorithm for selecting a random item from a list of unknown
length depends on having a good random number generator. Design and carry out
experiments to determine how well the method works in practice.

Exercise 3-2. If each input word is stored in a second hash table, the text is only
stored once, which should save space. Measure some documents to estimate how
much. This organization would allow us to compare pointers rather than strings in the
hash chains for prefixes, which should run faster. lmplement this version and mea-
sure the change in speed and memory consumption.

Exercise 3-3. Remove the statements that place sentinel NONWORDs at the beginning
and end of the data, and modify generate so it starts and stops properly without
them. Make sure it produces correct output for input with 0, 1, 2, 3, and 4 words.
Compare this implementation to the version using sentinels.

3.5 Java
Our second implementation of the Markov chain algorithm is in Java. Objcct-

oriented languages like Java encourage one to pay particular attention to the interfaces
between the components of the program. which are then encapsulated as independent
data items called objects or classes, with associated functions called methods.

Java has a richer library than C, including a set of contuiner classes to group exist-
ing objects in various ways. One example is a Vector that provides a dynamically-
growable array that can store any Object type. Another example is the Hashtable

72 DESIGN AND IMPLEMENTATION CHAPTER 3

class, with which one can store and retrieve values of one type using objects of
another type as keys.

In our application, Vectors of strings are the natural choice to hold prefixes and
suffixes. We can use a Hashtable whose keys are prefix vectors and whose values
are suffix vectors. The terminology for this type of construction is a map from pre-
fixes to suffixes; in Java, we need no explicit State type because Hashtable implic-
itly connects (maps) prefixes to suffixes. This design is different from the C version,
in which we installed State structures that held both prefix and suffix list, and hashed
on the prefix to recover the full State.

A Hashtabl e provides a put method to store a key-value pair, and a get method
to retrieve the value for a key:

Hashtable h = new Hashtable();
h.put(key, value);
Sometype v = (Sometype) h.get(key);

Our implementation has three classes. The first class. Pref i x, holds the words of
the prefix:

class P re f i x {
pub l i c Vector p re f ; // NPREF adjacent words from i npu t

The second class, Chain, reads the input, builds the hash table, and generates the
output; here are its class variables:

class Chain {
s t a t i c f i n a l i n t NPREF = 2; // s ize o f p r e f i x
s t a t i c f i n a l S t r i ng NONWORD = "\nW;

// "word" t h a t can ' t appear
Hashtable s tatetab = new Hashtable() ;

// key = Pre f i x , value = s u f f i x Vector
P re f i x p r e f i x = new Prefix(NPREF, NONWORD) ;

// i n i t i a l p r e f i x
Random rand = new Random(); . . .

The third class is the public interface; it holds main and instantiates a Chain:

class Markov I
s t a t i c f i n a l i n t MAXCEN = 10000; // maximum words generated
pub l i c s t a t i c vo id main(StringC1 args) throws IOException
{

Chain chain = new Chain() ;
i n t nwords = MAXGEN;
chain. build(System.in) ;
chain. generate(nwords) ;

I

SECTION 3.5 JAVA 73

When an instance of class Chain is created, it in turn creates a hash table and sets
up the initial prefix of NPREF NONWORDs. The bui 1 d function uses the library function
StreamTokenizer to parse the input into words separated by white space characters.
The three calls before the loop set the tokenizer into the proper state for our definition
of "word."

// Chain bu i l d : b u i l d State t ab le from i npu t stream
vo id bui 1 d(1nputSt ream i n) throws IOExcepti on
t

StreamTokenizer s t = new StreamTokenizer(in);

s t . rese tsyn tax0 ; // remove de fau l t ru les
st.wordChars(0, Character.MAX-VALUE); // t u r n on a l l chars
s t .whi tespaceChars(0, ' ') ; // except up t o blank
whi le (st.nextToken() != st.TT-EOF)

add(st.sva1) ;
add (NONWORD) ;

I

The add function retrieves the vector of suffixes for the current prefix from the
hash table; if there are none (the vector is null), add creates a new vector and a new
prefix to store in the hash table. In either case, it adds the new word to the suffix vec-
tor and advances the prefix by dropping the first word and adding the new word at the
end.

// Chain add: add word t o s u f f i x l i s t , update p r e f i x
vo id add(Stri ng word)
f

Vector su f = (Vector) statetab.get(pref ix) ;
i f (suf == n u l l) {

su f = new Vec to r0 ;
statetab. put(new Pre f i x (p re f i x) , suf) ;

I
suf. addElement(word) ;
pre f i x . p re f . removeEl ementAt (0) ;
p re f i x . p re f .addElement(word);

I

Notice that if su f is null, add installs a new Pre f i x in the hash table, rather than
p r e f i x itself. This is because the Hashtable class stores items by reference, and if
we don't make a copy, we could overwrite data in the table. This is the same issue
that we had to deal with in the C program.

The generation function is similar to the C version, but slightly more compact
because it can index a random vector element directly instead of looping through a
list.

74 DESIGN AND IMPLEMENTATION CHAPTER 3

// Chain generate: generate output words
void generate(i n t nwords)
C

p r e f i x = new Prefix(NPREF, NONWORD) ;
f o r (i n t i = 0; i < nwords; i++)

Vector s = (Vector) statetab.get(pref ix) ;
i n t r = Math.abs(rand.nextInt()) % s.size();
S t r ing suf = (String) s .elementAt(r) ;
i f (suf . equal s (NONWORD))

break;
System.out. p r in t ln (su f) ;
p re f i x . p re f . removeEl ementAt (0) ;
pre f ix -p re f .addElement(suf) ;

1
1

The two constructors of Pre f ix create new instances from supplied data. The first
copies an existing Prefix, and the second creates a prefix from n copies o f a string;
we use i t to make NPREF copies of NONWORD when initializing:

// Pre f ix constructor: dupl icate ex is t ing p r e f i x
Pref ix(Pref ix p)
C

pre f = (Vector) p.pref .c lone0;
1
// Pre f ix constructor: n copies o f s t r
P re f i x (i n t n, S t r ing s t r)
C

pre f = new Vector();
f o r (i n t i = 0; i < n; i++)

pref. addElement(str) ;
1

Pref i x also has two methods, has hCode and equal s, that are called implicitly by
the implementation of Hashtabl e to index and search the table. I t is the need to have
an explicit class for these two methods for Hashtabl e that forced us to make Pre f ix
a full-fledged class. rather than just a Vector like the suffix.

The hashcode method builds a single hash value by combining the set of
hashcodes for the elements of the vector:

s t a t i c f i n a l i n t MULTIPLIER = 31; // f o r hashcode0

// Pre f ix hashcode: generate hash from a l l p r e f i x words
publ ic i n t hashcode()
{

i n t h = 0;
f o r (i n t i = 0; i < pref.size(); i++)

h = MULTIPLIER * h + pre f .elementAt(i) .hashcode();
return h;

1

SECTION 3.5 JAVA 75

and equal s does an elementwise comparison of the words in two prefixes:

// Prefix equals: compare two prefixes for equal words
pub1 i c boolean equal s(0bject o)
{

Prefix p = (Prefix) o;
for (i n t i = 0; i < pref.size(); i++)

i f (! pref. el ementAt(i) .equal s(p. pref. el ementAt(i)))
return fa l se ;

return t rue;
1

The Java program is significantly smaller than the C program and takes care of
more details; Vectors and the Hashtabl e are the obvious examples. In general, stor-
age management is easy since vectors grow as needed and garbage collection takes
care of reclaiming memory that is no longer referenced. But to use the Hashtable
class, we still need to write functions hashcode and equals, so Java isn't taking care
of all the details.

Comparing the way the C and Java programs represent and operate on the same
basic data structure, we see that the Java version has better separation of functionality.
For example, to switch from Vectors to arrays would be easy. In the C version.
everything knows what everything else is doing: the hash table operates on arrays that
are maintained in various places, 1 ookup knows the layout of the State and Suffix
structures, and everyone knows the size of the prefix array.

% java Markov <jr-chemistry. t x t I fmt
Wash the blackboard. Watch i t dry. The water goes
in to the a i r . When water goes in to the a i r i t
evaporates. Tie a damp cloth t o one end of a solid or
liquid. Look around. What are the solid things?
Chemical changes take place when something burns. I f
the burning materi a1 has 1 i q u i ds, they are stab1 e and
the sponge r ise . It looked l ike dough, but i t i s
burning. Break up the lump of sugar in to small pieces
and put them together again i n the bottom of a l iquid.

Exercise 3-4. Revise the Java version of markov to use an array instead of a Vector
for the prefix in the State class.

