CompSci 220

Programming Methodology

01: Administration and Scala

Today’s Goals

Administration
Introduction to Scala

Administration

Let us talk a little about how we manage this course...

Course Description

Development of individual skills necessary for designing, implementing,
testing and modifying larger programs, including: use of integrated
design environments, design strategies and patterns, testing, working
with large code bases and libraries, code refactoring, and use of
debuggers and tools for version control. There will be significant
programming and a mid-term and final examination.

Prerequisite: CMPSCI| 187 or ECE 242. 4 credits.

Course Objective

The objective of this courseis to elevate your understanding of
programmingin general and in object-oriented and functional
programming techniques in particular. We accomplish this through
coverage of common design techniques, exposure to useful tools,
exploration of typical patterns found in software engineering, and
dissection of these techniques using a new programming language and
conceptsthat will make you a better programmer and software
engineer.

Books

* Programming in Scala 2" Edition
Martin Odersky, Lex Spoon, Bill Venners

* Scala for the Impatient
Cay Horstmann

* Functional Programmingin Scala
Paul Chiusano, Runar Bjarnason

forthe /#

Impatient

Cay Horstmann /=2

Course Website

http://umass-cs-220.github.io

WHAT DD WE WHAT'S YOUR WHEN ARE YOUR HOW WILL MY
COVER N CLASS TE RK 2
Y 5 LATE HOMEWO OFFICE HOURS:

IT'S YE TI-IE SYLLABUS

This message brought o you by every instructor that ever lived.
WWW.PHDCOMICS. COM

Read the syllabus ©

- N

Reading the syllabus L Y.

Schedule

* Part 1: Languageand Environment
* Scala Programming Language
* Git Version Control
* Comments and Documentation
* Testing

e Part 2: Object-Oriented Design Patterns
* Inheritance and Strategy Pattern

Observer Pattern

Factory and Singleton Pattern

Adaptor Pattern

Template Method and State Pattern

Schedule

* Part 3: Functional Programming

* Function Expressions, Closure, and Evaluation
Immutability and Functional Data Structures
Handling Errors without Exceptions
Strictness and Laziness
Purely Functional State and Parallelism
Functional APIs

* Part 4: Technique
* Regular Expressions
* Relational Databases, SQL, and Database Programming

SSSSSSSS

Software

’ Scala

Software J '

Intellij/IDEA

Software

bclicker
PO§ER @

%

Hardware y
>

Assignments

valuation -
DING * Project Assignments
OUTSTAN * Exercise Assignments
D EXCGHGnt * Unit Exams

GOOd * Final Exam

very
e « i-Clicker

8 Project Assignments 48% (6%) 4

1ments

3 Unit Exams 18% (6%) 1 Final Exam 18%(6% ‘ g A

8 Exercise Assignments 12% (1%)

i-Clicker 5%
of t

Grading

* Points-based System

* 8 Project Assignments @ 100 pts each (800 pts total)
8 Exercise Assighments @ 25 pts each (200 pts total)
3 Unit Exams @ 100 pts each (300 pts total)
1 Final Exam @ 300 pts
i-Clicker (80 pts total)

1520-1680=A-to A
Total Points in Course: 1680 1350-1519 = B- to B+
1176-1349=C-to C+
1010-1175=D to D+

No opportunity for extra-credit
0-1009=F

Project Assignments

valuation
* Unit Tests
NDING
OUTSTA * Automatic Grading
D Excellent * Grading Assistant
V\ very G‘OOd * Git Version Control
rad’ Submission to Moodle

Exercise Assignments

valuation
* Unit Tests
NDING
OUTSTA * Automatic Grading
D Excellent * Grading Assistant
V\ very G‘OOd * Git Version Control
rad’ Submission to Moodle

Unit Exams

valuation
G * On Moodle
OUTSTANDIN * There are 3 of these

D Excelleﬂt * 2 hours total

Good * Time Window
I

ﬂ \/e 20€

Final Exam

valuation
ING * On Moodle
OUTSTAND * Thereis 1 of these
D E)(Ce”ent * 3 hours total

Good * During final exam slot

ﬂ \/erY

i-Clicker

valuation
OUTSTANDIG

* Active participationin class
* There are many of these

Policies

Late Submissions

Policies

Grade Issues

Policies

Academic Honesty

Policies

Disability Services

Policies

Incompletes

’ Scala

Introduction to Scala

Now on to some technical content...

Typesafe Activator

* Typesafe is a company
that promotesthe Scala
programming language.

* Founded by Martin
Odersky

 Activatoris a tool for
running, compiling, and
testing Scala programs.

& activator

The Scala Interpreter (REPL)

scala>

Declaring Values and Variables

* Instead of using the names res0, res1, and so on, you can define your
own names:

scala> val answer = 8 * 5 + 2
answer: Int = 42

scala> 0.5 * answer

res3: Double = 21.0

Declaring Values and Variables

* We use variables instead of values if you really need to change the
contents.

* Perhaps surprisingly for Java and C++ programmers, most programs
do not need many var variables.

var counter = 0
counter = 1 // OK, can change a var

Declaring Values and Variables

* We use variables instead of values if you really need to change the
contents.

* Perhaps surprisingly for Java and C++ programmers, most programs
do not need many var variables.

var counter = 0

counter = 1 // OK, can e a var

- NOTE: You need not specify the type of a value or variable.

/4 It is inferred from the type of the expression with which

you initialize it.

Specifying the Type

* However, you can specify the type if necessary.

val greeting: String = null
val greeting: Any = ["Hello”

= NOTE: in Scala, the type of a variable or function is always

. written after the name of the variable or function.
Y
¢

No Semicolons ;

val xmax, ymax = 100 // Sets xmax and ymax to 100

val greeting, message: String = null
// greeting and message are both strings,
// initialized with null

NOTE: You may have also noticed that there were no
. semicolons after variable declarations or assignments. In
% Scala, semicolons are only required if you have multiple
statements on the same line.

v

Commonly Used Types

* Include the following: However, unlike Java, these types
* Byte are classes. There is no distinction
e Char between primitive types and class
e Short types in Scala.
* Int
* Long
* Float
* Double

Boolean

Commonly Used Types

* Include the following:
* Byte
* Char
* Short
* Int
* Long
* Float
* Double
* Boolean

However, unlike Java, these types
are classes. There is no distinction
between primitive types and class
types in Scala.

1.toString ()

Or, more excitingly,

1.to (10)

Wrapper Types

* In Scala, there is no need for wrapper types. It is the job of the Scala
compiler to convert between primitive types and wrappers to make it
more efficient for execution on the Java Virtual Machine.

* For example:
* Int becomes int

e Char becomes char
* Float becomes float

Rich Classes

* As you noticed, the Scalalanguage relies on the underlying
java.lang.Stringclassfor strings.

* However, it augments that class with well over a hundred operations
inthe StringOpsclass.

“Hello”.intersect ("World”)

The intersect method is a method of the St ringOps class not the
java.lang.Stringclass.

Rich Classes

* As you noticed, the Scalalanguage relies on the underlying
java.lang.Stringclassfor strings.

* However, it augments that class with well over a hundred operations
inthe StringOpsclass.

“Hello”.intersect ("World”)

v NOTE: Scala implicitly converts String objects to StringOps
_ objects to apply the intersect method. Similarly, there are
%> classes such as Richint, RichDouble, RichChar, and so on, that
enrich the available methods on Int, Double, Char respectively.

Arithmetic and Operator Overloading

* Arithmetic operatorsin Scalawork just as you would expect in Java or
C++:

val answer = 8 * 5 4+ 2

* The + - * / % operators do their usual job, as do the bit operators & |
NS> <L,

* However, in Scala, these operators are actually methods!

Arithmetic and Operator Overloading

a + b . NOTE: Here, +is the name of the method.

Scala allows alphanumeric charactersin
method names.

is a shorthjiy
a.+ (b)

Y
%

Arithmetic and Operator Overloading

In general, you can write:
a method b
as a shorthandfor

a.method (b)

Calling Functions and Methods

e Scala has functions in addition to methods.

import scala.math.

sqgrt (2)

pow (2, 4)

min (3, P1i)

Calling Functions and Methods

e Scala does not have static methods.

e Rather, it has singleton objects and more specifically companion
objects whose methods act like static methods in Java.

More on this next week...

BigInt.probablePrime (100, scala.util.Random)

t\ Singleton Objects -/’

Methods Without Parameters

* Scala methods without parameters often don’t use parenthesis.

* A call to a parameterless method without parenthesis typically
indicatesthat the method does not modify the object.

“Hello”.distinct

This returns a new String containing the distinct letters in the original
String. It does not modify the original String.

The apply Method

* In Scala, it is common to use a syntaxthat looks like a function call.
For example, if s is a string, then s(i) is the it" character of the string.

* In C++, you would write s]i]
* In Java, it would be s.charAt(i)

In Scala, you can think of this as an overloaded form of the () operator.
It is implemented as a method with the name apply.

StringOps.apply
* The documentation for the StringOps class you will find a method:
def apply(n: Int): Char

* Thatis, “Hello”(4) is a shortcut for

“Hello”.apply(4)

Bigint.apply

* In the documentation for the Bigint companion object you will find
apply methods that let you convert strings or numbers to Bigint
objects:

Bi1gInt (V"1234567890")

* is a shortcut for

BigInt.apply (V"1234567890")

Scaladoc

APl documentationforScala
(similar to Javadoc).

* Navigating Scaladocis a bit
more challenging than
Javadoc. Scala classes often
have many more
convenience methods than

Java classes (rich interfaces).

* Some methods use features
that you haven’t learned yet

http://www.scala-lang.org/api/current

(qQ Q)
#ABCDEFGHIJKLMNOPQRSTUVWXYZ scala
| — deprecate: d

display packages only

package scala

O Any Core Scala types. They are always available without an explicit import.

g ::i\R/:If Source package.scala

Q App » Linear Supertypes
gg ';"aly » Content Hierarchy

oolean

© O Byte
© @ Char (a

Q@ Cloneable . n .
o) Console Ordering ~ Alphabetic By inheritance

g Selayed:n: Inherited = scala AnyRef Any

eprecate:
Q@ deprecatedName Hide All " Show all
Double

og Dynamic Visibility Public All

@ Enumeration e —

O Equals Type Members

@ FallbackArrayBuilding type ::[A] = scala.collection.immutable.::[A]
© @ Float
(o) Function type AbstractMethodError = java.lang.AbstractMethodError

g :unz:on; abstract class Any

unction . .

@ Immutable Class Any is the root of the Scala class hierarchy.

_ 9 ?"“"9 - abstract class AnyVal extends Any

Conditional Expressions

* Scala has an if/else construct with the same syntaxas in Java or C++.

* However, in Scala, an if/else has a value.

1f (x > 0) 1 else -1

Has a value of 1 or -1, depending on the value of x.
This makes it more clear,

< NOTE: You could also declare a var s and assign
_ the value of s in the corresponding branch.
val s = %> However, the form on the leftis better because
if (x> 0) 1 else -1 it can be used to initialize a val — making it easier

to reason about.

More on this later in the course...

Conditional Expressions

e What about this?

1f (x > 0) “positive” else -1

 And, what about this one?

1f (x > 0) 1
This is a special value of type Unit

e One more: /

1f (x > 0) 1 else () «

Statement Termination

* In Java and C++, every statement ends with a semicolon.

* In Scala (also JavaScript), a semicolon is never required if it falls just
before the end of the line.

* However, if you want to have more than one statement on a single
line, you need to separatethem with semicolons.

if (n >0) { r=1r *n; n =1}

* If you want to continue a long statement over two lines make sure the
line ends in a symbol that cannot be the end of a statement.

