CompSci 220

Programming Methodology
02: Arrays, Maps, and Tuples

Today’s Goals

* Assignments

* Loops

* For Comprehensions
* Functions

* Arrays

* Maps

* Tuples

* Scaladoc

Block Expressions and Assignments

* In Java and C++, a block statement is a sequence of statements
enclosed in{ }.

* You use a block statement whenever you need to put multiple actions
in the body of a branch or loop statement.

* In Scala, a { } block contains a sequence of expressions, and the
result is also an expression.

* The value of a block is the value of the last expression.
val distance = { val dx x - x0

val dy y — vyO0
sqrt(dx * dx + dy * dy) }

Assignments

* In Scala, assignments have no value...

* Well, strictly speaking, they have a value of type Unit.
e Unitissimilarto voidin Java and C++.

* A block that ends in an assignment, such as
{r=r *n; n-=11}

has a Unit value.

* This is not a problem, but it will come up again when we learn how to
define functions.

Assignments (i-Clicker)

* What do you think this does?

var x = 2
var y = 4
X =y = 24

a) Itassigns24 toxandy.

b) It assigns 24 toy, but leaves x unchanged.
c) Itassigns 24 tox, but leaves y unchanged.
d) It fails to compile.

Input and Output

* Toprintavalueuseprintorprintln.

print (“"Answer: %)
println(42)

* Yields the same output as,

println(“Answer: % + 42)

Input and Output

* To read a line of input from the console use the readLine function.

* To read a numeric value use readInt,readDouble, readByte,
readShort, readlLong, readFloat, readBoolean,or
readChar.

import scala.io.StdIln.

val name = readLine (“Your name: “)
print (“Your age: %)
val age = readInt ()

println(s”Hello, $name! Next year you will be ${age + 1}”)

Loops

 Scala has the same while and do loops as Java and C++.

while (n > 0) {
r = r * n
n —=1

 Scala does not have alJava/C++ for (initialize; test; update) lOOp.
* Rather, you can use a for statement like this:

for (1 <= 1 to n)
r =r * 1

Loop Patterns

* When traversing a string or array, you often need a range from 0O ton
— 1. Inthat case, use the until method instead of the t o method.

val x = “Hello”

var sum = O

for (1 <= 0 until s.length)
sum += s (1)

* In the above example, it turns out there is a simpler way:

var sum = O v NOTE: In Scala, loops are not used as much
for (ch <- “Hello”) sum += ch as in other languages. As you will see later in
the course, you can often process the values
in a sequence by applying a function to all of
them.

AN

Advanced for Loops
* For loops can have multiple generators:

for (l <- 1 to 3; J <- 1 to 3) pril’lt((lo*i*j)_l_\\ \\)
// Prints 11 12 13 21 22 23 31 32 33

* Each generator can have a guard:

for (1 <- 1 to 3; j <=1 to 3 if i '= j) print ((10*i+j)+™ ™)
// Prints 12 13 21 23 31 32

* You can have any number of definitions:

for (i <- 1 to 3; from = 4-i; j <- from to 3) print ((10*i+j)+" ™)
// Prints 13 22 23 31 32 33

for Comprehensions

* When the body of the for loop starts with yield, then the loop
constructs a collection of values, one for each iteration:
for (1 <- 1 to 10) yield 1 % 3

* This type of loop is called a for comprehension.

* The generated collection is compatible with the first generator.

for (c <- “Hello”; 1 <- 0 to 1) yield (cti).toChar
// Yields “Hieflmlmop”

for Comprehensions

* Because for comprehensions can get busy, there is alternate syntax
using { }along with newlines to make it more clear:

for {
i <-1 to 3
from = 4 - 1

j <- from to 3
} yield (10*i+3)+""™

// Yields Vector (13, 22, 23, 31, 32, 33)

Functions

* To define a function, you specify the function’s name, parameters,
and body like this:

def abs(x: Double) = if (x >= 0) X else -Xx

* If the body is more than one expression:

def fac(n: Int) = {
var r = 1
for (1 <- 1 ton) r=1r * 1

r

}

* There is no need for a return keyword

Recursive Functions

* With a recursive function you need to specify the return type:

def fac(n: Int): Int =
if (n <= 0) 1 else n * fac(n — 1)

* Without the return type, the Scala compiler couldn’t verify that the
typeofn * fac(n - 1) isanInt.

Default Arguments

* You can provide default arguments for functions that are used when
you don’t specify explicit values.

def decorate(str: String,
left: String = “ [V,
right: String = “]7) =
left + str + right

* If you call decorate ("Hello”) you get “[Hello]”.
* Ifyou call decorate (“Hello”, “<%, “>7) you get “<Hello>".

Named Arguments

* You can also specify the parameter names when you supply the
arguments, like this:

decorate (left = "%, str = “Hello”, right = %“>>>")

Or like this

decorate (“Hello”, right = %“]>>>")

Variable Arguments

* Sometimes, it is convenient to implement a functionthat can take a
variable number of arguments.

def sum(args: Int*) = {

var result = 0
for (arg <- args) result += arg
result

}

* You can call this function with as many arguments as you like:

sum (1, 4, 9, 16, 25)

Procedures

 Scala has a special notation for a function that returns no value. If the
function body is enclosed in braces without a preceding = symboal,
then the return typeis Unit.

* The following procedure prints a string inside a box: ——————

def box(s: String) {
val border = “-” * s.length + “--\n”"
println (border + “|” + s + “|\n” + border
}

i-clicker question!

Which of the following types represent a Scala fixed-length array?

a) TI] iclicker
b) Array[T] EA; .
c) ArrayBuffer[T] w7 Ny
d) ArrayList[T] ©'e
e) List[T]

l” "’ l° l°° I”

i-clicker question!

Which of the following types represent a Scala variable-length array?

a) T[] iclicker
b) Array[T] RBH; s
c) ArrayBuffer[T] w7 Ny
d) ArrayList[T] ©'e
e) List[T]

l” l" l" l“’ I”

i-clicker question!

If arr is a Scala array of type Int, what syntaxis used to access an
element atindex i in the arrayarr?

iclicker
a) arr.get(i) RBM; .
b) arr(i) —_
c) arr.take(i) o ! @
d) arr]i]
e) arr->i

l” l" l" l°° ﬂ” |

Scala Arrays

* Scala has arrays!

* Java and C++ programmers often choose an array or a close relative
(array list or vectors) when they need to collect a bunch of elements.

* In Scala, there are many choices, but for now we will start with Arrays.

Fixed-Length Arrays

* If you need an array whose length doesn’t change,
use the Array type in Scala.

val nums = new Array[Int](10)
// An array of ten integers, all initialized with zero
val a = new Array[String](10)
// A string array with ten elements, all initialized with nulT
val s = Array("Hello", "World")
// An Array[String] of length 2—the type is inferred
// Note: No new when you supply initial values
s(0) = "Goodbye"
// Array("Goodbye", "World")
// Use () instead of [] to access elements

Fixed-Length Arrays

* If you need an array whose length doesn’t change,
use the Array type in Scala.

val nums = new Array[Int](10)
// An array of ten integers, all initialized with zero

val a = new Array[String](10)

// A string array with ten elements, all initialized with null
val s = Array("Hello", "World")

// An Array[String] of length 2—the type is inferred

// Note: No new when you supply initial values
s(0) = "Goodbye"

// Array("Goodbye", "World")

// Use () instead of [] to access elements

Fixed-Length Arrays

* If you need an array whose length doesn’t change,
use the Array type in Scala.

val nums = new Array[Int](10)
// An array of ten integers, all initialized with zero

val a = new Array[String](10)
// A string array with ten elements, all initialized with null

val s = Array("Hello™, "World")
// An Array[String] of length 2—the type is inferred
// Note: No new when you supply initial values
s(0) = "Goodbye"
// Array("Goodbye", "World")
// Use () instead of [] to access elements

Fixed-Length Arrays

* If you need an array whose length doesn’t change,
use the Array type in Scala.

val nums = new Array[Int](10)
// An array of ten integers, all initialized with zero
val a = new Array[String](10)
// A string array with ten elements, all initialized with null

val s = Array("Hello", "World")
// An Array[String] of length 2—the type is inferred
// Note: No new when you supply initial values

s(0) = "Goodbye"
// Array("Goodbye", "World")
// Use () instead of [] to access elements

Fixed-Length Arrays

* If you need an array whose length doesn’t change,
use the Array type in Scala.

val nums = new Array[Int](10)

// An array of ten integers, all initialized with zero
val a = new Array[String](10)

// A string array with ten elements, all initialized with null
val s = Array("Hello", "World")

// An Array[String] of length 2—the type is inferred

// Note: No new when you supply initial values

s(0) = "Goodbye"
// Array("Goodbye", "World")
// Use () instead of [] to access elements

i-clicker question!

What is the name of the class/type used in Java
for variable-length arrays?

iclicker

a) ExtensibleArray<T> By ®
READY

b) LinkedList<T> Rexoy

c) ArrayList<T> 1"

d) ArrayBuffer<T>
e) None of these

i-clicker question!

What is the name of the class/type used in Java
for variable-length arrays?

iclicker

a) ExtensibleArray<T> By ®
READY

b) LinkedList<T> Rexoy

c) ArrayList<T> 1

d) ArrayBuffer<T>
e) None of these

l” l" l° "’ I” |

Variable-Length Arrays

* Java has ArrayList<T>and C++ has vector that
grow and shrink on demand.

* The equivalent in Scalais called ArrayBuffer[T].

* To use an ArrayBufferyou need to import it from Scala’s
mutable collections package.

import scala.collection.mutable.ArrayBuffer

ArrayBuffer: Creation

* Itis easy to createa new empty ArrayBuffer

val b = ArrayBuffer[Int]()
// Or new ArrayBuffer[Int]
// An empty array buffer, ready to hold integers

ArrayBuffer: Appending an Element

* ArrayBuffer defines a method += that appends elements to the end.

b +=1
// ArrayBuffer(1)
// Add an element at the end with +=

ArrayBuffer: Appending Many Elements

* The += method is overloaded to allow many elements to be
appended to the end of an ArrayBuffer.

b += (1, 2, 3, 5)
// ArrayBuffer(1, 1, 2, 3, §5)
// Add multiple elements at the end by enclosing them in parentheses

ArrayBuffer: Appending Collections

* The ++= method is used to append one Collection to another.

b ++= Array(8, 13, 21)
// ArrayBuffer(1, 1, 2, 3, 5, 8, 13, 21)
// You can append any collection with the ++= operator

ArrayBuffer: Trimming

* The trimEnd method is used to remove elements at the end.

b ++= Array(8, 13, 21)
// ArrayBuffer(1, 1, 2, 3, 5, 8, 13, 21)
// You can append any collection with the ++= operator

b.trimEnd(5)
// ArrayBuffer(1, 1, 2)
// Removes the last five elements

* Adding/Removing elements at the end of an array buffer is an
efficient constant time operation.

ArrayBuffer: insert/remove

b.insert(2, 6) * You can also insert and

// ArrayBuffer(1, 1, 6, 2) remove elements at specific
// Insert before index 2 locations.
b.insert(2, 7, 8, 9) * However, these operations
// ArrayBuffer(1, 1, 7, 8, 9, 6, 2) require shifting all elements
// You can insert as many elements as you like after the inserted or removed
b.remove(2) element — making them not
// ArrayBuffer(l, 1, 8, 9, 6, 2) as efficient.

b.remove(2, 3)
// ArrayBuffer(l, 1, 2)
// The second parameter tells how many elements to remove

ArrayBuffer: insert/remove

* You can also insert and

b.insert(2, 6) .
// ArrayBuffer(1, 1, 6, 2) remove elements at specific
// Insert before index 2 locations.

b.insert(2, 7, 8, 9) * However, these operations
// ArrayBuffer(1, 1, 7, 8, 9, 6, 2) require shifting all elements
// You can insert as many elements as you like after the inserted or removed

b.remove(2) element — making them not
// ArrayBuffer(1, 1, 8, 9, 6, 2) as efficient.

b.remove(2, 3)
// ArrayBuffer(l, 1, 2)
// The second parameter tells how many elements to remove

ArrayBuffer: insert/remove

b.insert(2, 6) * You can also insert and

// ArrayBuffer(1, 1, 6, 2) remove elements at specific
// Insert before index 2 locations.
b.insert(2, 7, 8, 9) * However, these operations
// ArrayBuffer(1, 1, 7, 8, 9, 6, 2) require shifting all elements
// You can insert as many elements as you like after the inserted or removed
b.remove(2) element — making them not
// ArrayBuffer(1, 1, 8, 9, 6, 2) as efficient.

b.remove(2, 3)
// ArrayBuffer(l, 1, 2)
// The second parameter tells how many elements to remove

ArrayBuffer: insert/remove

b.insert(2, 6) * You can also insert and

// ArrayBuffer(1, 1, 6, 2) remove elements at specific
// Insert before index 2 locations.
b.insert(2, 7, 8, 9) * However, these operations
// ArrayBuffer(1, 1, 7, 8, 9, 6, 2) require shifting all elements
// You can insert as many elements as you like after the inserted or removed
b.remove(2) element — making them not
// ArrayBuffer(1, 1, 8, 9, 6, 2) as efficient.

b.remove(2, 3)
// ArrayBuffer(l, 1, 2)
// The second parameter tells how many elements to remove

ArrayBuffer: insert/remove

b.insert(2, 6) * You can also insert and

// ArrayBuffer(1, 1, 6, 2) remove elements at specific
// Insert before index 2 locations.
b.insert(2, 7, 8, 9) * However, these operations
// ArrayBuffer(1, 1, 7, 8, 9, 6, 2) require shifting all elements
// You can insert as many elements as you like after the inserted or removed
b.remove(2) element — making them not
// ArrayBuffer(1, 1, 8, 9, 6, 2) as efficient.

b.remove(2, 3)
// ArrayBuffer(l, 1, 2)
// The second parameter tells how many elements to remove

Array and ArrayBuffer Conversion

* Often you want to build up an array, but you do not yet know how
many elements you will need.

* In that case, make an ArrayBuffer the call the following:

b.toArray
// Array(1, 1, 2)

* Likewise, if you need to extend an arrayyou would do this:

a.toBuffer

Traversing Arrays and ArrayBuffers

* In Java and C++ there are several syntactic differences between arrays
and array lists or vectors.

* Scalais more uniform —you can often use the same code for both.

* Here is how you traverse an array of array buffer with a for loop:

for (1 <- 0 until a.length)
println(i + ": " + a(1))

* The variable i goes from 0 to a.length- 1.

Traversing Arrays and ArrayBuffers

The until method belongs to the Richint class.
It returns all numbers up to (but not including)
the upper bound. For example:

for (i <- [0 until a.length)
println(i + ": " + a(1))

0 until 10
// Range(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

Looping Patterns: Skipping

* The construct
for (1 <- range)

makes the variable i traverse all values of the range. In our case, the
loop variable i assumes the values 0, 1, and so until a.length-1.

* To visit every second element, let i traverse

0 until (a.length, 2)
// Range(0, 2, 4, ...)

Looping Patterns: Reversing / No Indexing

* To visit elements starting from the end of the array, traverse

(0 until a.length).reverse
// Range(..., 2, 1, 0)

* If you don’t need the array index in the loop body, visit the array
elements directly, like this:

for (elem <- a)
printin(elem)

Transforming Arrays

* In the previous examples we saw how to manipulate arrays and array

buffers in a style that resembles idioms from languages such as Java
and C++.

 Scala, however, can go further in how arrays, array buffers, and many
other collections can be transformed in a convenient and concise way.

e Such transformations do not modify the original array, rather they
yield a new one.

* Transformations on collections is a common technique that is prolific
in functional programming.
We will see much more on this later in the semester...

Transforming Arrays: for comprehension

e Use a for comprehension to transforman array:

val a = Array(2, 3, 5, 7, 11)
val result = for (elem <- a) yield 2 = elem
// resultisArray(4, 6, 10, 14, 22)

* The for (...) yield loop creates a new collection of the same type as the
original collection. If you started with an array, you get another array.
If you started with an array buffer, you get another array buffer.

* The result contains the expressions after the yield, one for each
iteration of the loop.

Common Algorithms: sum

* It is often said that a large percentage of business computations are
nothing but computing sums and sorting. Fortunately, Scala has built-
in functions for these tasks.

Array(1l, 7, 2, 9).sum

// 19
// Works for ArrayBuffer too

* In order to use the sum method, the element type must be a
numeric type: integral, floating-point, Biginteger, or BigDecimal.

Common Algorithms: min/max

* Similarly, the min and max methods yield the smallest and largest
element in an array or array buffer.

ArrayBuffer("Mary", "had", "a", "Tittle", "Tamb").max
// "little"

Deciphering Scaladoc

* Because Scala has a richer type system than Java, you may encounter
some strange-looking syntax as you browse the Scala documentation.

* Fortunately, you don’t have to understand all the nuances of the type
system to do useful work.

Scaladoc: O or more arguments

def append(elems: Ax): Unit

* This method takes zero or more arguments of type A. For example,
b.append(1, 7, 2, 9) appends four elements to b.

Scaladoc: TraversableOnce

def appendAll(xs: TraversableOnce[A]): Unit

* The xs parameter can be any collection with the TraversableOnce
trait, the most general trait in the Scala collections hierarchy.

e Other common traitsinclude Traversable and Iterable.

* All Scala collections implement these traits—simply think “any
collection” when you see one of these.

Scaladoc: This

def += (elem: A): ArrayBuffer.this.type

* This method returns this, which allows you to chain calls. For
example, b +=4-=5,.

* When you work with an ArrayBuffer you can simply think of the
method as

def += (elem: A): ArrayBuffer[A]

Scaladoc: Decoder Ring

* Take a look in Chapter 3 in Scalafor the Impatient to see other
common patternsin deciphering Scaladoc.

* As we progress with Scalayour understanding of Scaladoc will
improve and you will become more comfortable with navigating
Scala’s type system.

Multi-Dimensional Arrays

* Like in Java, multi-dimensional arrays are implemented as
arrays of arrays.

* For example, a 2-dimensional array of Double values has the type
Array[Array[Double]].

* To construct such an array you would do this:

val matrix = Array.ofDim[Double](3, 4) // Three rows, four columns
* To access an element, use two pairs of parenthesis:

matrix(row)(column) = 42

i-clicker question!

Which of the following types represent a Scala fixed-length array?

a) TI] iclicker
b) Array[T] EA; .
c) ArrayBuffer[T] w7 Ny
d) ArrayList[T] ©'e
e) List[T]

l” "’ l° l°° I”

i-clicker question!

Which of the following types represent a Scala variable-length array?

a) T[] iclicker
b) Array[T] RBH; s
c) ArrayBuffer[T] w7 Ny
d) ArrayList[T] ©'e
e) List[T]

l” l" l" l“’ I”

i-clicker question!

If arr is a Scala array of type Int, what syntaxis used to access an
element atindex i in the arrayarr?

iclicker
a) arr.get(i) RBM; .
b) arr(i) —_
c) arr.take(i) o ! @
d) arr]i]
e) arr->i

l” l" l" l°° ﬂ” |

Scala Maps and Tuples

A classic programmer’s saying is,
“If you can only have one data structure, make it a hash table”

e Hash tables — or more generally — maps are among the most versatile
data structures. Scala makes it particularly easy to use them.

* Maps are collections of key/value pairs.
Keys map to values

* Tuples are aggregates of n objects, not necessarily of the same type.
A tuple of n objectsis called an n-tuple.
A tuple of 2 objects is called a pair.

Constructing a Map

* You can constructa Map as

val scores = Map("Alice" -> 10, "Bob"™ -> 3, "Cindy" -> 8)

* This constructs an immutable Map|[String, Int].

* If you want a mutable map, use

val scores = scala.collection.mutable.Map("Alice" -> 10, "Bob" -> 3, "Cindy" -> 8)

* Of course, you can import scala.collection.mutable.Map:

val scores = Map(“Alice” —> 10, “Bob” —> 3, “Cindy” —> 8)

Constructing Pairs

* The -> operator makes a pair, the value of
"Alice" -> 10

IS
("Alice", 10)

* You could have similarly defined the map as

val scores = Map(("Alice", 10), ("Bob", 3), ("Cindy", 8))

Accessing Map Values

* The analogy between functions and maps is particularly close
because you use the () notation to look up key values.

val bobsScore = scores("Bob") // Like scores.get("Bob") in Java

* If the map doesn’t contain a value for the requested key, an exception
is thrown.

* To check whether there is a key with a given value, do this
val bobsScore = 1f (scores.contains("Bob")) scores("Bob") else 0
* Since this is common there is a short cut that you see often:

val bobsScore = scores.getOrElse("Bob", 0)

Option Value

* The call map.get(key) returns an Option object that is either
Some(value for key) or None.

val v = scores.get(“Bob”).getOrElse(0)

* We discuss this further when we look at functional programming
techniques and how we handle exceptional control flow.

Updating Mutable Map Values

* In a mutable map, you can update a map value, or add a new one,
with a () to the left of an = sign:

scores("Bob") = 10

* This either updates the existing value for the key “Bob”, or if the key
does not exist it creates a new key/value pair in the map.

e You can also do this:
scores += ("Bob" -> 10, "Fred" -> 7)

scores -= "Alice"

Immutable Map Values

* You can’t updatean immutable map, but you can do this to create a
newly constructed map:

val newScores = scores + ("Bob" -> 10, "Fred" -> 7)

* The newScores map contains the same associations as scores, except
that “Bob” has been updated and “Fred” added.

* Instead of saving the result as a new value, you can use a var:

var scores = ...
scores = scores + ("Bob" -> 10, "Fred" -> 7)

Iterating Over Maps

* The following amazingly simple loop iterates over all key/value pairs
of a map:

for ((k, v) <- map) process k and v

* The magic here is that you can use pattern matchingin a Scala for
loop. We will cover the mechanics of this when we talk about

functional programming.
* If you need to just visit the key or values you do this:

scores. keySet
for (v <- scores.values) printin(v)

Tuples
* A tuple value is formed by enclosing individual values in parenthesis:
(1, 3.14, "Fred")

is a tuple of type Tuple3[int, Double, java.lang.String].
Also written as:

(Int, Double, java.lang.String)
* If you have a tuple:
val t = (1, 3.14, "Fred")
then you can access its components with the methods 1, 2, 3, ..

val second = t._2 // Sets second to 3.14

Tuples and Pattern Matching

* You can use pattern matching, also known as destructuring
assignment, to easily assign tuple contentsto variables:

val (first, second, third) =t
* If you do not need the third part, you can leave it out:

val (first, second, _) =t

