CompSci 220

Programming Methodology
03: Classes, Objects, and Git

Today’s Goals

* Maps and Tuples (Highlights)
* IntelliJ: REPL and Worksheets
* Scala Classes

* Scala Objects

* Git Version Control

Scala Maps and Tuples

* A classic programmer’s saying is,
“If you can only have one data structure, make it a hash table”

e Hash tables — or more generally — maps are among the most versatile
data structures. Scala makes it particularly easy to use them.

* Maps are collections of key/value pairs.
Keys map to values

* Tuples are aggregates of n objects, not necessarily of the same type.
A tuple of n objects is called an n-tuple.
A tuple of 2 objects is called a pair.

Constructing a Map

* You can construct a Map as

val scores = Map("Alice" -> 10, "Bob" -> 3, "Cindy" -> 8)

e This constructs an immutable Map[String, Int].

* If you want a mutable map, use

val scores = scala.collection.mutable.Map("Alice" -> 10, "Bob" -> 3, "Cindy" -> 8)

* Of course, you can import scala.collection.mutable.Map:

val scores = Map(“Alice” —> 10, “Bob” —> 3, “Cindy” —> 8)

Constructing Pairs

* The -> operator makes a pair, the value of
"Alice" -> 10

is
("Alice", 10)

* You could have similarly defined the map as

val scores = Map(("Alice", 10), ("Bob", 3), ("Cindy", 8))

Accessing Map Values

* The analogy between functions and maps is particularly close
because you use the () notation to look up key values.

val bobsScore = scores("Bob") // Like scores.get("Bob") in Java

* |f the map doesn’t contain a value for the requested key, an exception
is thrown.

* To check whether there is a key with a given value, do this

val bobsScore = if (scores.contains("Bob")) scores("Bob") else 0

* Since this is common there is a short cut that you see often:

val bobsScore = scores.getOrElse("Bob", 0)

Option Value

* The call map.get(key) returns an Option object that is either
Some(value for key) or None.

val v = scores.get(“Bob”).getOrElse(0)

* We discuss this further when we look at functional programming
technigues and how we handle exceptional control flow.

Updating Mutable Map Values

* In a mutable map, you can update a map value, or add a new one,
with a () to the left of an = sign:

scores("Bob") = 10

* This either updates the existing value for the key “Bob”, or if the key
does not exist it creates a new key/value pair in the map.

* You can also do this:
scores += ("Bob" -> 10, "Fred" -> 7)

scores -= "Alice"

Immutable Map Values

* You can’t update an immutable map, but you can do this to create a
newly constructed map:

val newScores = scores + ("Bob" -> 10, "Fred" -> 7)

* The newScores map contains the same associations as scores, except
that “Bob” has been updated and “Fred” added.

* Instead of saving the result as a new value, you can use a var:

var scores = ...
scores = scores + ("Bob" -> 10, "Fred" -> 7)

Iterating Over Maps

* The following amazingly simple loop iterates over all key/value pairs
of a map:

for ((k, v) <- map) process k and v

 The magic here is that you can use pattern matching in a Scala for
loop. We will cover the mechanics of this when we talk about

functional programming.
* |f you need to just visit the key or values you do this:

scores.keySet
for (v <- scores.values) printin(v)

Tuples
* A tuple value is formed by enclosing individual values in parenthesis:

(1, 3.14, "Fred")

is a tuple of type Tuple3[int, Double, java.lang.String].
Also written as:

(Int, Double, java.lang.String)

* |f you have a tuple:
val t = (1, 3.14, "Fred")

then you can access its components with the methods 1, 2, 3, ..

val second = t._2 // Sets second to 3.14

Tuples and Pattern Matching

* You can use pattern matching, also known as destructuring
assignment, to easily assign tuple contents to variables:

val (first, second, third) = t
* |f you do not need the third part, you can leave it out:

val (first, second, _) =t

Intellil

* This is best done by example ©

* This short tutorial will cover:
» Creating a new Scala/SBT project
» Creating a new Scala class/object
* Using the REPL to access that class/object
* Using Worksheets to interactively explore code

Simple Classes

* In there simplest form, Scala classes look like Java/C++

class Counter {
private var value = 0 // You must initialize the field
def increment() { value += 1 } // Methods are public by default
def current() = value

}
* In Scala, a class is not declared as public.

* A Scala source file can contain multiple classes, and all of them have
public visibility.

Using Simple Classes

* To use this class, you construct objects and invoke methods.

val myCounter = new Counter // Or new Counter()
myCounter.increment()
printin(myCounter.current)

* |f yourecall, you can drop parens for parameterless methods.

myCounter.increment() // Use () with mutator
printIn(myCounter.current) // Don’t use () with accessor

Properties with Getters/Setters

* In Java, we do not like to use public fields:

public class Person { // This is Java
public int age; // Frowned upon in Java

}

A getter/setter pair is

. ty.
* This is preferable: often called a property

public class Person { // Thisis Java Why is this better?

private int age;

pubTic int getAge() { return age; }

public void setAge(int age) { this.age = age; }
}

Properties with Getters/Setters: Goodness

 Setters allow us to protect the values of fields.

public void setAge(int newValue) { if (newValue > age) age = newValue; }
// Can’t get younger

* This is good, but requires lots of Java boilerplate to do this.

* Scala likes to reduce boilerplate!

Properties: Scala Goodness

e Here is Scala’s approach:

class Person {
private var privateAge = @ // Make private and rename

def age = privateAge
def age_=(newValue: Int) {
it (newValue > privateAge) privateAge = newValue; // Can’t get younger

}
}

Properties: Scala Goodness

° i ¢ .
Here is Scala’s approach: We can create a private

field using private.

class Person {
private var privateAge = 0 // Make private and rename

def age = privateAge
def age_=(newValue: Int) {
it (newValue > privateAge) privateAge = newValue; // Can't get younger
}
}

Properties: Scala Goodness

e Here is Scala’s approach:

Define a getter...

class Person {
private var privateAge = @ // Make private and rename

def age = privateAge
def age_=(newValue: Int) {
it (newValue > privateAge) privateAge = newValue; // Can't get younger

}
}

Properties: Scala Goodness

e Here is Scala’s approach:

And define a setter...

class Person {
private var privateAge = @ // Make private and rename

def age = privateAge
def age_=(newValue: Int) {
it (newValue > privateAge) privateAge = newValue; |// Can’t get younger

}

Properties: Scala Goodness

val fred = new Person

fred_age = 30 This looks like a public

fred.age = 21) field that you are

printIn(fred.age) // 30 assigning a value to,
however, it is possibly
invoking a method.

Sometimes you need only a getter...

* When you only need a getter and do not want to field to be modified
what can you do?

Sometimes you need only a getter...

* When you only need a getter and do not want to field to be modified
what can you do?

class Message {
val timeStamp = new java.util.Date

Constructors

* In Scala, you may have as many constructors as you wish.
There are two types of constructors:

* Primary constructor: this constructor is the “base” constructor. We will talk
more about that in a moment.

* Auxiliary constructor: these constructors are called this. Each auxiliary
constructor must start with a call to a previously defined constructor.

Auxiliary Constructors

class Person {
private var name =
private var age = 0

n You define auxiliary
constructors with this.

def this(name: String) { // An auxiliary constructor
this() // Calls primary|constructor
this.name = name

}

def this(name: String, age: Int) {|// Another auxiliary constructor
this(name) // Calls previous auxiliary constructor
this.age = age

}

Auxiliary Constructors

val pl = new Person // Primary constructor
val p2 = new Person("Fred") // First auxiliary constructor
val p3 = new Person("Fred", 42) // Second auxiliary constructor

Primary Constructor

* Every class has a primary constructors that is part of the class
definition. The arguments are placed right after the class name.

class Person(val name: String, val age: Int) {
// Parameters of primary constructor in (...)

Primary Constructor

* Every class has a primary constructors that is part of the class
definition. The arguments are placed right after the class name.

class Person{va] name: String, val age: Int) {
// Parameters of primary constructor in (...)

The parameters of the primary constructor become
fields that are initialized with the construction
arguments.

Primary Constructor

* The primary constructor executes all statements in the class
definition.

class Person(val name: String, val age: Int) {
printIn("Just constructed another person”)
def description = name + " is " + age + " years old"

}

This would be executed when a new Person object is
created:

val p = new Person(“Pixel”, 14)
// Just constructed another person

Primary Constructor

* The primary constructor executes all statements in the class
definition.

class Person(val name: String, val age: Int) {
printIn("Just constructed another person”)

def description =|name + " is " +|age|+ " years old"

}

[The parameters are accessed like a any other class field.

Nested Classes

import scala.collection.mutable.ArrayBuffer
class Network {
class Member(val name: String) {
val contacts = new ArrayBuffer[Member]

}

private val members = new ArrayBuffer[Member]

def join(name: String) = {
val m = new Member(name)
members += m
m

}
}

Scala Objects: Definition

* Scala has not static methods or fields.
* Instead you use the object construct.
* An object defines a single instance of a class.

object Accounts {
private var lastNumber = 0
def newUniqueNumber() = { lastNumber += 1; lastNumber }

}

Scala Objects: Uses

* You use an object in Scala whenever you would have used a singleton
object in Java, C++, etc. In particular,

* As a home for utility functions or constants
* When asingle immutable instance can be shared efficiently
 When asingle instance is required to coordinate a service

Companion Objects

* InJava and C++ you often

have a class with both class Account {
Instance ”;]et:C’dS and val id = Account.newUniqueNumber()
static methods. private var balance = 0.0
* In Scala, you achieve this def deposit(amount: Double) { balance += amount }
by having a classand a L
companionobject of the }
same name.
* The clas§anit§ object Account { // The companion object
companion object can private var lastNumber = 0

access each other’s

private features. They

must be locatedin the }
same source file.

private def newUniqueNumber() = { lastNumber += 1; lastNumber }

Objects Extending Classes

* |tis often useful to specify abstract class UndoableAction(val description: String) {
default objects that can def undo(): Unit
be shared. def redo(): Unit

* Thatis, a special object }
that represents a default,
an initigl setting, or object DoNothingAction extends UndoableAction("Do nothing") {
something unique or override def undo() {}
individual. override def redo() {}

* We only need one of }
these, so we create single
object that extends a base val actions = Map("open" -> DoNothingAction, "save" -> DoNothingAction, ...)
class. // Open and save not yet implemented

* This is called the flyweight
pattern.
https://en.wikipedia.org /wiki/Flyweight_pattern

Apply Method

* Remember that special method apply that is used when you try to
use an object as a function call:

Object(argl, ..., argN)

* For example, the Array object defines apply methods that allow array
creation with expressions such as:

Array("Mary", "had", "a", "Tittle", "lamb")

* Why not use new?
It makes doing this nicer: Array(Array(1, 7), Array(2, 9))

Apply Method: Example

class Account private (val id: Int, initialBalance: Double) {
private var balance = initialBalance

} .

object Account { // The companion object
def apply(initialBalance: Double) =
new Account(newUniqueNumber(), initialBalance)

Now you can construct an account as

val acct = Account(1000.0)

Application Objects

* Come in two flavors...

object Hello {
def main(args: Array[String]) {
printin("Hello, World!")

}

} object Hello extends App {

printin("Hello, World!")
}

