CMPSCI 220 Programming Methodology

05: Inheritance vs Composition

Objectives

Composition versus Inheritance
Inheritance in OO
Unified Modeling Language
IS-A and HAS-A relationships
Composition as an alternative to inheritance
Delegation

SimUDuck Application

Amazing Game Company
Imagine that you work for a company that
makes a highly successful game
SimUDuck. The game can show a large
variety of duck species swimming and
making quacking sounds. The initial
designers of the system used standard
OO techniques and created on Duck
superclass from which all other duck
types inherit.

This is example is taken from head first design patterns Very real looking graphics, don't you think!

SimUDuck Class Hierarchy

Duck

+ name: String

+ quack()

+ swim()

+ display()

I/ Other duck-kke methods

I

This is a UML Diagram!
Unified Modeling Language

MallardDuck

ReadheadDuck

lots of other duck classes...

+ name: String

+ name: String

+ name: String

+ display() // looks like a mallard

+ display() // looks like a redhead

+ display() // looks like a others...

SimUDuck Application: Next Version!

Amazing Game Company
To stay competitive, the executives
decide that flying ducks is just what
SimUDuck needs to blow away the
competitors!

You know what to do because you are a
true OO genius. We will simply add a new
method that will allow ducks to fly!

Very real looking graphics, don't you think!

SimUDuck Class Hierarchy Flying!

Now, all subclasses will

Duck inherit from the Duck super
+ name: String / class - all ducks can now fly!

+ quack()

+ swm()

+ display()

+fiy()

Il Other duck-like methods

I

MallardDuck ReadheadDuck lots of other duck classes..,

+ name: Strng + name: String + name: Stnng

+ display() // looks like a mallard + display() // looks ke a redhead + desplay() / looks like a others.,

SimUDuck Application: Next Version!

Amazing Game Company
BIG PROBLEM!

The executives contact you from a
shareholders meeting. They just gave a
demo of the game and their were rubber
ducks flying all over the screen!

What happened?

SimUDuck Flying Fix!

Well, what can we do to make this work?

SimUDuck Flying Fix!

Well, what can we do to make this work?

Sure, we can override the fly method to do
nothing in our RubberDuck class.

But, what if we add a DecoyDuck?

Example!

DecoyDuck Can Work, But...

We have several empty methods...

class DecoyDuck extends Duck(“"decoyduck”) {
def display() = name + " float like a piece of wood!
def quack() = ""
def swim() =
def fly() =

i-clicker Question

Which of the following are disadvantages of using inheritance to
provide Duck behavior? Choose one out of possibly many...

Code is duplicated across subclasses

Runtime behavior changes are difficult

We can't make ducks dance

Changes can unintentionally affect other ducks
Ducks can't fly and quack at the same time

mo o wx»

SimUDuck Application: lterative Releases!

Amazing Game Company

The executives are now telling you that
they will be having tight release schedules
and want to update the game every 2
months! Each update will include at least
6 new ducks.

Is there another approach to solving the
problem?

Very real looking graphics, don't you think!

SimUDuck Application: lterative Releases!

Amazing Game Company

The executives are now telling you that
they will be having tight release schedules
and want to update the game every 2
months! Each update will include at least
6 new ducks.

Is there another approach to solving the
problem?

Very real looking graphics, don't you think!

What about interfaces/traits?

SimUDuck With

Interfaces/Traits!

Duck
Flyable Quackable .
+ name: String
+ swimy)
+ iy0 + quacky() + display()
Il Other duck-like methods
i A
L T T T T) I
MallardDuck ReadheadDuck RubberDuck DecoyDuck
4+ name: S"ng 4 name: S"ng 4 name: S"nq + name SUIIXJ
+ display() + display() + display0
* ™0 * 0 + quack() + display()
+ quack() + quack()

Ok, this works - but what
other problems are
introduced by this?

Example!

Problem With Interfaces/Traits?

What is the biggest problem introduced here?

A. It makes subclasses impossible to implement
B. You are constrained by the number of ducks
C. You are forced to duplicate lots of code

D. You can't introduce other animals

E. There are no problems

Code Duplication

S0, using interfaces forces lots of duplicated code to be
written. This is an indicator of bad design.

So, perhaps inheritance is not all that it quacks up to be?
Wouldn't it be cool if there was a way to build software so

that when we need to change it, we could do so with the
least possible impact on existing code?

Zeroing in on the problem...

Design Principle: Identify the aspects of your application that
vary and separate them from what stays the same.

Take what varies and "encapsulate” it so it won't affect the
rest of your code.

The result: fewer unintended consequences from code changes
and more flexibility in your systems!

Inheritance IS-A Relationship

Inheritance forms an "is-a" relationship between classes. In our
fixed version of the SimUDuck hierarchy we had...

MallardDuck |S-A Duck |S-A Flyable IS-A Quackable
RubberDuck |S-A Duck |S-A Quackable
DecoyDuck |S-A Duck

SimUDuck: Separate the ducks from the, um, ducks

How could we better design this application so that we can
separate out the changes so that our ducks can be more
easily implemented and eliminate redundant code?

Is there an alternative to the IS-A relationship?

Example!

Ducks HAS-A Behavior

The last solution shows the HAS-A relationship

MallardDuck 1S-A Duck We have carefully encapsulated those aspects of a
HAS-A FlyableBehavior duck thgt can ch.ange, and will change, across
HAS-A QuackableBehavior many different kinds of ducks.

RubberDuck [S-A Duck You can see this quite clearly with the HAS-A
HAS-A FlyableBehavior relationship.

HAS-A QuackableBehavior

DecoyDuck |S-A Duck HAS-A leads to a more flexible design that can be
HAS-A FlyableBehavior easily extended without lots of code duplication.
HAS-A QuackableBehavior . .

This is called composition.

abstract class Duck(val name: String) {

}

Delegation

val flybehavior: FlyBehavior

val quackbehavior: QuackBehavior
def fly() = flybehavior.perform()

def quack() =

quackbehavior.perform()

def display():

String

We encapsulate behavior in other classes to
isolate changes and form a HAS-A relationship.

The base class uses delegation to "delegate" the
behavior (e.g., fly, quack) to other classes that
implement the specific behavior.

Composition Over Inheritance

Design Principle:
Favor composition over inheritance

This will lead to better design!

SimUDuck Application: New Idea!

Amazing Game Company

Now, the executives want to add "magic"
to the game. That is, they want ducks to
be able to change the behavior of other
ducks they come in contact with. They
want ducks to be able to teach other
ducks new tricks.

Can we teach a rubber duck to fly?

What changes might we need to make to
allow this capability?

Very real looking graphics, don't you think!

