CMPSCI 220 Programming Methodology

06: Observer and Decorator



Objectives

Observer Pattern

Learn how objects can "observe" other objects.
Apply the observer pattern in Scala.

Decorator Pattern

Learn how objects can gain new responsibilities at runtime.
Apply the decorator pattern in Scala.



i-clicker Question!

Why should you favor composition over inheritance?

t is in fashion

t leads to a more flexible class design

t allows you to create classes automatically

t lets you defer implementation to super classes
am not sure

moow>




Observer: Weather Monitoring Application

Humidity Sensor Service

O~

Temperature Sensor Service pulls data...

‘ Weather Station
Humidity: 60

Pressure:
Pressure Sensor Service WeatherData U

I
|
|
' Object
D/ : Display Device
|
|
|

displays... Current
Conditions

Temp: 72 F

Weather-O-Rama Provides What we Implement

Our job, if we choose to accept it, is to create an app that
uses the WeatherData object to update three displays for
current conditions, weather stats, and a forecast.



Weather Monitoring App: First Try...

WeatherData
getTemperature()
getHumidity() /* This method gets called whenever the
getPressure() * weather measurements have been updated

*/
def measurementsChanged() {
// Your code goes here.

measurementsChanged() —

I/l Other Methods }

The developers of the
WeatherData object left us a clue

about what we need to add...



Weather Monitoring App: First Try...

WeatherData

getTemperature()
getHumidity()
getPressure()
measurementsChanged() —

/[l Other Methods

The developers of the
WeatherData object left us a clue
about what we need to add...

/* This method gets called whenever the
* weather measurements have been updated
*/
def measurementsChanged() {
val t = getTemperature
val h = getHumidity
val p = getPressure

conditionDisplay.update (t, h, p)
statsDisplay.update(t, h, p)
forcastDisplay.update(t, h, p)




Weather Monitoring App: First Try...

WeatherData

getTemperature()

getHumidity() /* This method gets called whenever the

getPressure() i/weather measurements have been updated

m rementsChan —

easurementsCha ged() def measurementsChanged() {

val t = getTemperature

// Other Methods val h = getHumidity
val p = getPressure
conditionDisplay.update (t, h, p)

statsDisplay.update(t, h, p)
forcastDisplay.update(t, h, p)

The developers of the
WeatherData object left us a clue

about what we need to add...

What is wrong with this implementation?



Weather Monitoring App: First Try...

WeatherData

getTemperature()

getHumidity() /* This method gets called whenever the

getPressure() i/weather measurements have been updated

m rementsChan —

easurementsCha ged() def measurementsChanged() {

val t = getTemperature

// Other Methods val h = getHumidity
val p = getPressure
conditionDisplay.update (t, h, p)

statsDisplay.update(t, h, p)
forcastDisplay.update(t, h, p)

The developers of the
WeatherData object left us a clue

about what we need to add...

We have hardcoded the display elements! Yuck!



Observer Pattern Defined

A newspaper publisher goes into business and begins
publishing newspapers.

You subscribe to a particular publisher, and every time
there's a new edition it gets delivered to you - as long as
you remain a subscriber.

You unsubscribe when you don't want the newspaper
anymore, and they stop being delivered.

While the publisher remains in business, people, hotels,
airlines, and other businesses constantly subscribe and
unsubscribe to the newspaper.



Publisher + Subscriber = Observer Pattern

When data in the Subjectchangesthe
observers are notified ofthe change.

== Dog Object

Subject Object il Cat Object

This objectisn'tan
observerso it does not
get notified when the
Subject's data
changes.

Mouse Object

Observer Objects

Duck Object




Subscribing...

Subject Object

Register/Subscribe me! QUACK!

A duckobjectcomes along and tells the
Subjectobjectthatit wantsto become an
observer...

Duck Object




Subscribing...

A duckobjectcomes along and tells the
Subjectobjectthatit wantsto become an
observer...

You are Subscribeq!

_______________ -

Subject Object

Duck Object



Publisher + Subscriber = Observer Pattern

When data in the Subjectchangesthe
observers are notified ofthe change.

. . \ S o
Subject Object N ~ Cat Object

Observer

Mouse Object _
~ Objects

The Duck Objectis now subscribed andwill N .

receive updates from the Subjectobjectwhere S ~ "
©up on bjectob) P

there is a change in its data!

Duck Object




Publisher + Subscriber = Observer Pattern

When data in the Subjectchangesthe
observers are notified ofthe change.

2 e e e e L _ _____DogObject
: : /S
Subject Object R e, Cat Object
\\
N\
\\
Mo Mouse Object Obgerver
N _ Objects

Duck Object




Publisher + Subscriber = Observer Pattern

When data in the Subjectchangesthe
observers are notified ofthe change.

. e Dog Object
<~ T —_
N
N
\
: : AN
Subject Object AN Cat Object
\
N
Observer
The Mouse Objects
Objectis now
Unsubscribed! Duck Object

Mouse Object




Publisher + Subscriber = Observer Pattern

When data in the Subjectchangesthe
observers are notified ofthe change.

S e ___L Dog Object
\ ___________
N
N
\
N
Subject Object Cat Object
When the Subject Objecthas a new
data value it must notify each of its Obslerver
subscribers... Objects

Duck Object




Publisher + Subscriber = Observer Pattern

When data in the Subjectchangesthe
observers are notified ofthe change.

S e ____45| Dog Object
\ ___________
N
N
\
N
Subject Object Cat Object
When the Subject Objecthas a new
data value it must notify each of its Obslerver
subscribers... Objects

Duck Object




The Observer Pattern Defined

The Observer Pattern defines a one-to-many

dependency between objects so that when one
object changes state, all of its dependents are

notified and updated automatically.



Observer Class Diagram

observers
<Subject> <Observer>
registerObserver() update()
removeObserver()
notifyObservers() A
subject
ConcreteSubject J ConcreteObserver

registerObserver() ={ ...}
removeObserver() ={... }
notifyObservers() ={ ... }

/I Other possible methods...
getState()
setState()

When two objects are loosely coupled,
they can interact, buthave very little
knowledge ofeach other.

The observer patternprovides an
objectdesign where subjects and
observers are loosely coupled.

update()={... }

/I Other possible methods...




Designing the Weather Station:
Try Sketching it Out!

Before moving on, try sketching out the classes/traits you'll need
to implement the Weather Station, including the WeatherData
class and its display elements. Make sure your diagram shows
how all the pieces fit together and also how another developer
might implement her own display element.

You can do this with the people around you...

We will collect a paper from each of you at the end of class.



This Might Help: Observer Class Diagram

observers
<Subject> <Observer>
registerObserver() update()
removeObserver()
notifyObservers() A
subject
ConcreteSubject J ConcreteObserver

registerObserver() ={ ...}
removeObserver() ={... }
notifyObservers() ={ ... }

/I Other possible methods...
getState()
setState()

When two objects are loosely coupled,
they can interact, buthave very little
knowledge ofeach other.

The observer patternprovides an
objectdesign where subjects and
observers are loosely coupled.

update()={... }

/I Other possible methods...




Designing the Weather Station

<Subject> — <Observer> <DisplayElement>
registerObserver() update() display()
removeObserver() {
notifyObservers() A \\\ - '/'k
CurrentConditionDisplay - = —\Q\ 4 \
rd > ’ \
ConcreteSubject update() \\\\ / / \\
display() Y \
registerObserver() : N~ \
removeObserver() StatisticsDisplay \
notifyObservers() \
update v \
getTemperature() di‘;play(()) S « \
getHumidity() SN
getPressure() Ny
measurementsChanged()
ForecastDisplay
ThirdPartyDisplay An additional 3rd pary update()
display can be easily display()
update() added!

display()




Implementing the Weather Application

src/main/scala/cs220/Observer.scala



