CMPSCI 220 Programming Methodology

07: Decorator, Singleton, & Factory Pattern

Objectives

Decorator Pattern

Learn how objects can gain new responsibilities at runtime.
Apply the decorator pattern in Scala.

Singleton Pattern
Learn how objects can be represented as singleton objects. We know
how to do this in Scala. What does it look like in Java?

Factory Pattern
We have been introduced to the factory pattern already, but we didn’t
make it obvious. We will see how Scala handles this and what it
looks like in Java.

i-clicker Question!

What design principle is applied to objects with the
observer pattern?

A. Objects are tightly coupled to improve flexibility
B. Objects are loosely coupled to improve flexibility
C. Objects are combined to improve flexibility

D. Objects are eliminated to reduce complexity

E. | am not sure

Welcome to Starbuzz Coffee!

This is Milton Waddams. He didn't
take CMPSCI 220 at UMass Amherst.
He thinks he is awesome, buthe is not.
He is the mastermind behind the poorly
designed ordering system at Starbuzz.
He can't code himselfoutof a paper
bag. He really likes staplers.

This is Peter Gibbons (aka Jimmy).
He is a sad man because he is upset
with the developerof Starbuzz's
ordering system. Everytime thereisa
new beverage ittakes forever forthe
beverage to become available in their
system. Notto mention the systemis
S000 slow!

Starbuzz Ordering System Design

"Oh Yeah! Thisis a good design!"

Beverage

description

getDescription()
cost()

/I Other useful methods

Milton, you SUCK!

HouseBlend

DarkRoast

Decaf

Espresso

cost()

cost()

cost()

cost()

In addition to your coffee, you can also ask for several condiments like steamed milk, soy,
and mocha, and have itall topped off with whipped milk. Starbuzz charges a bitfor each of
these, so theyreally need to get them build into their ordering system.

How might this be done in this design?

|
Class Explosion!!! —_—
weerpton(
)
N Oty oo methods
ExpresscisSisarmed it
HouseSentWithSteamesMib. Dark Rows N SteamsedM
— sndllochs — ndMocha Socsiatamdn — sndiiochs
= andCaramel
Dark RoastVEN St amed Wik
"So, whatis yourpoint.." - andCarsemad FapronsoW AR pardibocha
- @
p— ma)
™ Oscatmitrsoy
po—- st Dec s*ehcmamechlin pro
DecafWithStoameditih |
‘1«0 | l.., e [., DocafWithS oy ardMochs
) e
HeuseBlend Wi WhipandSoy)
-) !-umm-u
 aam Esp s ve Wh WY pandS oy
Dt RosstAies Wh iGandSoy DecafiietihipandSoy
el - -

u Beversge
Class Explosion!!! —
wCerpten(
ool
N Other e methods
ExprosaciVesSieamed ik
HouseSentWihSteamesNid Dark Roas th SteamsedM
- e - prr—saron DecafWithStaarmecitds — Slida
— andCaramal
- . ExpronsomEmnpandtischa
-0 -
ma)
— ens Dok RosstiehSinamechl i ooeiE Sl cont)
"You are FIRED!And leave the stapler!" = DecalWthStaammsttis .
poe — Cunron{ - i OucafWitr5 oy srdMoc ha
A o) cont)
HeuseBlend ATH WhipandSey -e
cosn) ey
o0s)
How can we fix this? - — ———re—— e
o) - -

Starbuzz Ordering System Design Take 2

The superclass cost() will calculate the
costs forall of the condiments, while the
overridden cost() in the subclasses will
extend thatfunctionality to include costs
for the specific beverage type.

Each cost() method needs to compute
the costofthe beverage and then add
in the condiments by calling the
superclassimplementation of cost().

Beverage

description
milk, soy, mocha, whip

getDescription()
cost()

hasMilk()
setMilk()

hasSoy()
hasMocha()
setMocha()
hasWhip()
setWhip()

/I And other useful methods...

HouseBlend

DarkRoast

Decaf

Espresso

cost() cost()

cost()

cost()

Your Turn!

Write the cost() methods for the two classes below
(pseudo-Scala is okay)

class Beverage { class DarkRoast extends Beverage {
def cost: Double = { val description = "Most Excellent Dark Roast"
def cost: Double = {

What Might Impact This Design?

Price changes for condiments will force us to alter existing code.

New condiments will force us to add new methods and alter the cost
method of the superclass.

We may have new beverages. For some of these beverages (iced
tea?), the condiments may not be appropriate, yet the Tea subclass
will still inherit methods like hasWhip().

What if a customer wants a double mocha or espresso?

The Open-Closed Principle

Design Principle:
Classes should be open for extension, but closed for modification.

How does this relate to our existing ordering system design?

Our goal is to allow classes to be easily extended to incorporate new
behavior without modifying existing code.

What do we get if we accomplish this?

Designs that are resilient to change and flexible enough to take on new
functionality to meet changing requirements.

Meet The Decorator Pattern

1. Take a DarkRoast object.
2. Decorate it with a Mocha object.
3. Decorate it with a Whip object.

4. Call the cost() method and rely on delegation to add on the
condiment costs.

The Decorator Pattern Defined

The Decorator Pattern attaches additional
responsibilities to an object dynamically. Decorators

provide a flexible alternative to subclassing for extending
functionality.

Decorator Class Diagram

<Component>

«

methodA()
methodB()
/I Other useful methods

I

ConcreteComponent

methodA()
methodB()
/I Other useful methods

RN

Each decorator HAS-A component,
which means thatthe decoratorhas an
instance variable thatholds a reference
to a component.

Decorators implementthe same traitor
abstractclass as the componentthey

\ Decorator

are going to decorate.

methodA()
methodB()
/I Other useful methods

ConcreteDecoratorA

val wrappedObj: Component

methodA()

methodB()
newBehavior()

/I Other useful methods

ConcreteDecoratorB

val wrappedObj: Component
val newState

methodA()

methodB()
newBehavior()

/I Other useful methods

Starbuzz's New Design

—

\

<Beverage>
CondimentDecorator
getDescription()
cost() 4 getDescription()
/I Other useful methods
HouseBlend DarkRoast Espresso Decaf
cost() cost() cost() cost()

Milk Mocha Soy Whip
beverage beverage beverage beverage
cost() cost() cost() cost()
getDescription() getDescription() getDescription() getDescription()

Implementing the Starbuzz Application

src/main/scala/cs220/Decorator.scala

Singleton Pattern

It is often the case that we desire only a single
instance of a class. This single instance is
referred to as a singleton object.

Singleton Use Case: Databases

In many real-world applications a database is
necessary for storing large amounts of data.

Typically, we are interacting with only a single
database instance. That is, we do not want to
create a “new instance” of a database each
time we interact with it. Rather, we want to
Interact with the same database.

Singleton in Java: Interface

package java.singleton;

public interface Database {
public String get(String key);
public String set(String key, String value);

Singleton in Java: Implementation

public class MyDatabase implements Database {
private Map<String, String> db;

private MyDatabase() {
db = new HashMap<>();

}

@Override
public String get(String key) {
return db.get(key);

}

@Override

public String set(String key, String value) {
db.put(key, value);
return value;

}

Singleton in Java: Implementation

public class MyDatabase implements Database {
private Map<String, String> db;

private static MyDatabase instance = null;

public static MyDatabase getInstance() {
if (instance == null) {
instance = new MyDatabase();
I3

return instance;
}
}

Implementing the Singleton Pattern

src/main/javalj/singleton/*.java

Singleton in Scala: Trait

package scala.singleton

trait Database {

def get(key: String): String

def set(key: String, value: String): String
}

Singleton in Scala: Implementation

object MyDatabase extends Database {
private var db = Map([String, String]()

override def get(key: String): String = db(key)

override def set(key: String, value: String): String = {
db = db + (key — value)
value
I3
I3

Implementing the Singleton Pattern

src/main/scala/s/singleton/*.scala

Factory Pattern

The factory pattern is a creational pattern which uses factory
methods to deal with the problem of creating objects without
specifyingthe exact class of object that will be created.

This is done by creating objects by calling a factory method
that creates the objectand returns it as an abstractclass or
interface type.

This allows for easily trading in different implementations
without affecting client code that calls the factory method.

Factory Pattern Use Case

Imagine we want to create an application that
draws shapes to the screen.

In addition, we want to be able to add new
shape implementations to our application
without affecting the code that uses the shapes.

Factory Example

val s1 = new Circle
sl.draw

Factory Example

val s1 = new Circle
sl.draw

val s2 = new Square
s2.draw

Factory Example

val s1 = new Circle
sl.draw

val s2 = new Square
s2.draw

What if we wanted our circles
to be drawn differently?

Factory Example

valt-sl1 = new Circle

val sl =

new BrushedCircle
sl.draw
val s2 = new Square
s2.draw

What if we wanted our circles
to be drawn differently?

Factory Example

val-sl1 = npnew Circle
val sl =

new BrushedCircle
sl.draw
val s2 = new Square
s2.draw

What if we wanted our circles
to be drawn differently?

What is the problem here?

Factory Example

valt-sl1 = new Circle
val sl1 =

new BrushedCircle
sl.draw
val s2 = new Square
s2.draw

What if we wanted our circles
to be drawn differently?

Is there a way to improve on
this design so we need not
change the “client” code?

Factory UML Diagram

Shape

+draw() : void

<<Interface>>

FactoryPattern
Demo

+main() : void

7)
implements implements asks
implements
Circle Square Rectangle i
ShapeFactory
creates
be
+draw() : void +draw() : void +draw() : void +getShape() :

Shape

Factory Example

val f = new Factory
val s1 = f.shape(“circle”)
sl.draw

Factory Example

val f = new Factory

val s1 = f.shape(“circle”)
sl.draw

val s2 = f.shape(“square”)
s2.draw

Factory Example

val f = new Factory

val s1 = f.shape(“circle”)
sl.draw

val s2 = f.shape(“square”)
s2.draw

Now, imagine we change the
implementation of our circle.

Factory Example

val f = new Factory

val s1 = f.shape(“circle”)
sl.draw

val s2 = f.shape(“square”)
s2.draw

Now, imagine we change the
implementation of our circle.

This will not change the client
code requesting shapes.

Implementing the Factory Pattern

src/main/scala/j/factory/*.java
src/main/scala/s/factory/*.scala

