CMPSCI 220 Programming Methodology

08: Command Pattern

Based on Head First Design Pattems



Objectives

Command Pattern
e Learn how objects can encapsulate invocation.
e Apply the command pattern in Scala.
e Learn how to evolve the command pattern to support undo.



Free Hardware!

Home Automation or Bust!

You have been hired to
implement an API for
programming a remote for home
automation. The goal is to make
it as easy and as flexible as
possible to allow the remote to
be easily reprogrammed.

Are you up for the challenge?
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A Brief Introduction to the Command Pattern

Q The Waitress

takes the Order,
€ You, the Customer, places it on the
give the Waitress order counter
your Order. and says “Order
up!”

Q The Short-Order Cook prepares your meal
from the Order.
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From Diner to Command Pattern

create
Command
object

Client

The client is responsible for
creating the command object.
The command object consists of
a set of actions on a receiver.



From Diner to Command Pattern

execute

def execute: Unit {
receiver.actionl();
receiver.action2();

}

—

createCommandObject()

create

Command

actionl()
action2()

Command
object

Client

The actions and the Receiver
are bound together in the
Command object



From Diner to Command Pattern

createCommandObject() create
execute [€ Command
object
Command Client

The Command object provides
one method, execute(), that
encapsulates the actions and
can be called to invoke the
actions on the Receiver.



From Diner to Command Pattern
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S
etComma n a0

The client calls setCommand() setCommand
on an Invoker object and passes

it the command object, where it

gets stored until it is needed. Invoker



From Diner to Command Pattern
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execute <€

Command

At some point in the future the
Invoker calls the command
object’s execute() method...
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Client

setCommand

Invoker




From Diner to Command Pattern
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execute € Command
object
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Invoker
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the command object’s execute() method...



Diner Command Pattern

What Does

What? Waitress Command
Short Qrder Cook execute()
orderUp() Client
Order Invoker
(Customer Receiver

takeQrder() setCommand()
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Command Pattern Class Diagram

Client

o—— Has-A Relationship

Invoker

+ setCommand()

Command (trait)

+ execute()
+ undo()

Receiver
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+ action()

ConcreteCommand
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+ undo()

> |s-A Relationship

_____________________________________________

E def execute: Unit =
receiver.action()



Command Pattern Defined

The Command Pattern encapsulates a
request as an object, thereby letting you
parameterize other objects with different

requests, queue or log requests, and support
undoable operations.



Assigning
Commands to

Slots...

Commands

(1) Each slot gets 3 command.

(2) When the button is pressed, the exetute()
method is talled on the corvesponding command

o
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Invoker
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we'll worry about the
remaining slots in 3 bit

(3) |n the executel) method actions
are invoked on the retiever

Receiver >




Example

« Simple
 Garage
 (General
 Fan
 Undo

« Macro



