CMPSCI 220 Programming Methodology

08: Command Pattern

Based on Head First Design Pattems

Objectives

Command Pattern
e Learn how objects can encapsulate invocation.
e Apply the command pattern in Scala.
e Learn how to evolve the command pattern to support undo.

Free Hardware!

Home Automation or Bust!

You have been hired to
implement an API for
programming a remote for home
automation. The goal is to make
it as easy and as flexible as
possible to allow the remote to
be easily reprogrammed.

Are you up for the challenge?

The Vendor Classes

This should give you a

good idea of what we
on()
. need to control from the
CeilingLight off()
setCd() remote!
on() setDvd()
°'ﬁ() v setRadio()
. dirnf) setVolume()
OutdoorLight on() FaucetControl
on() off{) openValue()
off() setinputChannel() closeValue()
set\nlume()
CeilingFan
high() circulate()
GardenLight medium() GarageDoor Je'sOn()
low() = jelsOff()
setDuskTime() off() Gown() setTemperaturet()
se‘Da":gn('}“eo getSpeed|) stap() Thermostat
manualon
ligtOs
manualOff() |:;to;8 setTemperature()
Sprinkl
priner l SecurityControl

waterOn()
waterOff()

Light

am)
disarm()

A Brief Introduction to the Command Pattern

Q The Waitress

takes the Order,
€ You, the Customer, places it on the
give the Waitress order counter
your Order. and says “Order
up!”

Q The Short-Order Cook prepares your meal
from the Order.

Let us look a
this a little
closer...

ts ok an order
T'll have a Burger
with Cheese and a
Malt Shake.

The Ovder tons®

st
o and the tust
shp t ave \f\t*«‘" 0

omer & ment
nit

items tha

Cr, e
a FeOfde, 0

The (.uitch knows
what he wants and
treates an ovder

The Waitress takes the Ovder, and whey she
gets around to if, she ealls its orderlipl)

6" method to begin the Order’s preparation

The Short Order
Cook Follos the

nstrug t.on‘ o:

the Ovder and

makeBurger(), makeShake() Produces the meal

}

asts ok an order
paist

The Ovder &©
A and the tus

tems that ave e

t ov-C" s ment

1},(7\ on ‘{‘

T'll have a Burger
with Cheese and a
Malt Shake.

Let us look a

Cr, e
a FeOfde, 0

this a little
closer...

The tustomer knows

The customer knows what he

(akeOrde (what he wants and
T
wants and creates an order.) ereates an ovder
§ The Waitress takes the Ovder, and whey, she
-‘F_—,- ECt: around to it, she calls its ordexUp()
| method to begin the Order’s prepavation
"
o
60
0&

The Shovt Order
Cook { 'ow: {kc
instrug tions of
the Ovder 3nd
Preduces the meal

ol

£ an arder

T'll have a Burger
with Cheese and a
Malt Shake.

[
s menV

ten on it

Let us look a
this a little
closer...

The order consists of an order k) T sone o
rdery i reates an ovder

slip and the customer’s menu
The Waitvess takes the Ovder, and whey, she

items that are written on it.
s’ 5ct: around to i s she calls its o evldp()
‘t method to bct_\-r.tth: Of:glr's vrc:vaz:\
"

The Short Order
Cook Follos the

instrue tions of
the Order 3nd
Produces the peg)

Let us look a
this a little
closer...

The wait staff takes the order,
and when they get around to it,
they call its orderUp() method to
begin the Order’s preparation.

¢ ¥
ol eo.-.'.v.{-, o'« an ord(
e Ordc A 'e meny
ip and the tustomer & #
4 that ave written on '

items

I

with Cheese and a

makeBurger(), makeShakel)

)

Pkeo
rde
&’ R
>
Q The Waitress take
gt = gets around to if,
6' methed fo beain £
"
*\Q\\/ 3
& $

have a Burger

Malt Shake.

The tustomer knows

what he wants and

tveates an ovder

the Order, and whey she

he ealls its orderlp()
e O'dcv's wcvawtw

% Jhe Short Order

Cook “co'ow: the

nstruetions of
the Order 3nd
Produces the meal

s Y an or Y
¥ topuists © an o
he Ovder © <t] d
o 4 nd the Cus omer menV

\p @ the t 1
1"‘\81, are wyv

T'll have a Burger
with Cheese and a
Malt Shake.

T«Lt" on \&

items

Let us look a
this a little
closer...

The Order has all the
instructions necessary to koo, e T sone oo
prepare the meal. The Order v s

directs the Short Order Cook B e e i i g e,
with methods like makeBurger() R0 o bt kel ol

method to begin the Ord

e (_yg;{u an ovder

€Y s prepavation

o
<_’/ % The Shert Ovder

- CWk ‘\co'ow: {Lc
nstruetions of
\E‘-—/ the 6‘.d" and

makeBurger(), makeShakel() Produces the meyl

)

sts o; an order

T'll have a Burger
with Cheese and a
Malt Shake.

The Order tors
"v“\;, and the tus
Lhat ave W

+o~€"" ment
1},(7\ on ‘{‘

Let us look a
this a little
closer...

Cra
&) FeOfde, 0

The customer knows
what he wants and
treates an ovder

The Short Order cook follows e
the instructions of the Order and "der)

he Waitvess 4 .
Thc Waitress t&kt‘ the O'dﬂ and whey she

produces the meal. _
Y < 9ets dround to it cho pan. FRTIND
" methed to beain the Order’s wwa“_’é;’\
"
o
&F
Tkt gko'i O'dev

Cook Follos the

m:{:ruc tions of

w the Ovder and
makeBurger(), makeShake() Produces the meal

)

sts o; an grder

The Ovder torst an o
dip and e tustomer s mEn

Let us look a oy LI

this a little
closer...

T'll have a Burger
with Cheese and a
Malt Shake.

Finally, we have the meal as . o (e b ot
e ra p - what he wants an
output. ery |

tveates an ovder

The Waitress takes the Or
s S) gets around to if,
‘ method to beain

dev, and whep she
she calls its orderllp()
the Order’s preparation

The Sheet Order

Cook {Ouow: U"c
nstrug ﬁ-om o:
_k-B_O_ the Ovdey and

P £)]

makeBurger(), makeShakel) roduces the megy

y

From Diner to Command Pattern

create
Command
object

Client

The client is responsible for
creating the command object.
The command object consists of
a set of actions on a receiver.

From Diner to Command Pattern

execute

def execute: Unit {
receiver.actionl();
receiver.action2();

}

—

createCommandObject()

create

Command

actionl()
action2()

Command
object

Client

The actions and the Receiver
are bound together in the
Command object

From Diner to Command Pattern

createCommandObject() create
execute [€ Command
object
Command Client

The Command object provides
one method, execute(), that
encapsulates the actions and
can be called to invoke the
actions on the Receiver.

From Diner to Command Pattern

createCommandObject() create

Command
object

execute <€

Command Client

S
etComma n a0

The client calls setCommand() setCommand
on an Invoker object and passes

it the command object, where it

gets stored until it is needed. Invoker

From Diner to Command Pattern

createCommandObject()

create

execute <€

Command

At some point in the future the
Invoker calls the command
object’s execute() method...

Setco
Mma
nd()

Command
object

Client

setCommand

Invoker

From Diner to Command Pattern

createCommandObject() create
execute € Command
object
Command Sefc Client
0
~ang)
setCommand
action1()
action2()
Invoker
Receiver At some point in the future the Invoker calls

the command object’s execute() method...

Diner Command Pattern

What Does

What? Waitress Command
Short Qrder Cook execute()
orderUp() Client
Order Invoker
(Customer Receiver

takeQrder() setCommand()

What Does
What?

Diner Command Pattern

Waitress (ommand

Short Order Cook execute()
orderUp() Client
Order Invoker
(Customer Receiver

takeQrder() setCommand()

What Does
What?

Diner Command Pattern

Waitress Command

Short Order Cook execute()
orderUp() Client
Order Invoker
Customer Receiver

takeQrder() setCommand()

What Does
What?

Diner Command Pattern

Wastress Command

Short Qrder Cook exectte()
orderUp(Client
Order Invoker
Customer Receiver

takeQrder() setCommand()

What Does
What?

Diner Command Pattern

Waitress Command

Short Qrder Cook exectte()
orderUp((Client
Order Invoker
Customer Receiver

takeOrder() setCommand()

What Does
What?

Diner Command Pattern

Waitress (Command

SbOﬂ. Or([et’ COOk eXeCUte-O

orderUp(Client
Order Invoker

(Customer Receiver

takeQrder() setCommand()

What Does
What?

Diner Command Pattern

Waitress (Command

Short Order Cook exectte()

orderUp(Client

Order Invoker

(Customer Receiver

takeQrder() > setCommand()

Command Pattern Class Diagram

Client

o—— Has-A Relationship

Invoker

+ setCommand()

Command (trait)

+ execute()
+ undo()

Receiver

)
1
1
1
1
1

\ 4

+ action()

ConcreteCommand

[—

+ execute()
+ undo()

> |s-A Relationship

E def execute: Unit =
receiver.action()

Command Pattern Defined

The Command Pattern encapsulates a
request as an object, thereby letting you
parameterize other objects with different

requests, queue or log requests, and support
undoable operations.

Assigning
Commands to

Slots...

Commands

(1) Each slot gets 3 command.

(2) When the button is pressed, the exetute()
method is talled on the corvesponding command

o
O S

Invoker

O e
Soree ' ingF

we'll worry about the
remaining slots in 3 bit

(3) |n the executel) method actions
are invoked on the retiever

Receiver >

Example

« Simple
 Garage
 (General
 Fan
 Undo

« Macro

