CMPSCI 220 Programming Methodology
09: Adapter Pattern

Based on Head First Design Pattems



Problem




Problem




Problem




Problem

|

(SN
N\
N

v &



) Problem

2
| A/\U

g | ‘ 
W

N
v A%//

v "{#,ﬁ .

V4

()






Adapter Pattern

In software design and
implementation it is often the
case where you need to fit a
square peg into a round
hole!

Fortunately, software is
easier to manipulate than
physical objects!



Adapter Pattern

The adapter pattern is a
technique that wraps objects
to given them new
responsibilities.

We want to adapt a design
expecting one interface to a
class that implements a
different interface!



Objectives

Adapter Pattern

e Learn how objects can adapt to different designs.
e Apply the adapter pattern in Scala.



I-clicker

What is the primary purpose of the observer pattern?

a) To tightly couple objects to other objects.

b) To abstract duplicate code into separate classes/objects.
c) Toloosely couple objects to other objects.

d) To abstract algorithms into objects for composition.

e) None of these.



I-clicker

What is the primary purpose of the command pattern?

a) To allow for continual updates to related classes.
b) To eliminate code duplication.

c) To parameterize a request with different arguments.
d) To encapsulate a request into a separate object.
e) To dictate the implementation of subclasses.



I-clicker

What is the primary purpose of the factory pattern?

a) To allow for continual updates to related classes.
b) To decouple implementation from creation of objects.
c) To parameterize an object with different types.

d) To encapsulate an algorithm into a separate object.
e) To dictate the implementation of subclasses.



The Adapter Pattern

Converts the interface of a class into another
interface the clients expect.

Adapter lets classes work together that couldn’t
otherwise because of incompatible interfaces.



Object-Oriented Adapters

Vendor Class

Your Existing System

Their interface does not match
the one you've written your code
against!



Object-Oriented Adapters

You certainly do not want to rewrite
your system to conform to their
interface. So, what do you do?

Vendor Class

Your Existing System

Their interface does not match
the one you've written your code
against!



Object-Oriented Adapters

Vendor Class

Your Existing System

The adapter implements the
interface your classes expect.



Object-Oriented Adapters

Vendor Class

Your Existing System

The adapter implements the And, talks to the vendor interface
interface your classes expect. to service your requests.



Object-Oriented Adapters

Vendor Class

Your Existing System

T T |

No code changes New code No code changes.



Ducks and Turkeys!

We have received a request from our technical lead that we

need to extend the SimUDuck game with support for interfacing
to 3 party libraries!

Unfortunately, each library only works on either Ducks or
Turkeys.



Ducks and Turkeys!

We have received a request from our technical lead that we
need to extend the SimUDuck game with support for interfacing
to 3 party libraries!

Unfortunately, each library only works on either Ducks or
Turkeys.

Adapters to the rescue!

Let us look at some code...



Question?

low much "adapting” does an adapter need to
do? It seems like if | need to implement a large
interface, | could have a LOT of work on my
hands.



Question?

Does an adapter always wrap one and only one
class?



Question?

What if | have old and new parts of my system, the old parts
expect the old vendor interface, but we have already written the
new parts to use the new vendor interface?

It is going to get confusing using an adapter here and the
unwrapped interface there. Wouldn't | be better off just rewriting
my older code forgetting the adapter?



Adapter: Class Diagram

Client

Target (trait)

The client sees only the
target interface.

\ 4

+ request()

1
|
|
|
:

Adapter

+ request()

Adaptee

+ specificRequest()




Adapter: Class Diagram

Client

Target (trait)

The client sees only the
target interface.

\ 4

+ request()

1
|
|
|
!

Adapter

+ request()

The adapter implements
the target interface.

Adaptee

+ specificRequest()




Adapter: Class Diagram

Client Target (trait) The adapter implements
¢ > + request() the target interface.

*
|
|
l

The client sees only the 1

target interface. Adapter Adaptee

+ request() + specificRequest()
|

The adapter is composed
with the adaptee.




Adapter: Class Diagram

Client Target (trait) The adapter implements
¢ > + request() the target interface.
*
|
|
l
The client sees only the 1
target interface. Adapter Adaptee
+ request() + specificRequest()
|
The adapter is composed All requests get delegated

with the adaptee. to the adaptee.



Object vs Class Adapters

It turns out there are two kinds of adapters...

* oObject adapters: use composition
» class adapters: use multiple inheritance

"he first is supported by all OO languages.
'he second, requires language support.




Object Adapters

Client

Target

L
A

> + request()

Instead of using composition to
adapt the adaptee, the adapter
now subclasses the Adaptee
and the Target classes.

Adaptee

+ specificRequest()

Adapter

+ request()




Scala Traits

Scala, does not have multiple inheritance (The
diamond problem). However, it does have traits
that can provide implementation (Java 8 now
has this as well).

Scala uses J/inearization to make this work...
Let us look at some code...



