CompSci 220

Programming Methodology

12: Functional Data Structures



A Polymorphic Higher-Order Function

def findFirst[A]l(as: Array[A], p: A => Boolean): Int = {
def loop(n: Int): Int =
if (n >= as.length) -1
else if (p(as(n))) n
else loop(n + 1)

loop(0)
¥



A Polymorphic Higher-Order Function

def findFirst[A](as: Array[A]l, p: A => Boolean): Int = {
def loop(n: Int): Int =
if (n >= as.length) -1
else if (p(as(n))) n

else loop(n + 1)
The findFirst function is polymorphic

loop(0) In its type parameter A.
¥



A Polymorphic Higher-Order Function

def findFirst[A]l(as: Array[A]l, p: A => Boolean): Int = {
def loop(n: Int): Int =
if (n >= as.length) -1
else if (p(as(n))) n

else loop(n + 1)
The type parameteris used to
loop(0) restrict the type of the elements

containedinthe Arrayto A.

}



A Polymorphic Higher-Order Function

def findFirst[A]l(as: Array[A]l, p: A => Boolean): Int = {
def loop(n: Int): Int =
if (n >= as.length) -1
else if (p(as(n))) n

else loop(n + 1)
And to restrict the type of the argument
loop(0) of the predicate function p to A.
; We use the function p to abstract the task
of determiningwhat we are lookingfor.



A Polymorphic Higher-Order Function

def findFirst[A]l(as: Array[A], p: A => Boolean): Int = {
def loop(n: Int): Int =
if (n >= as.length) -1
else if (p(as(n))) n

else loop(n + 1)
loop performs the iteration overthe array

loop(0) of elements of type A.

}

Thisis a tail-recursive function —the Scala
compiler will translate thisinto an
efficient loop!



A Polymorphic Higher-Order Function

def findFirst[A]l(as: Array[A], p: A => Boolean): Int = {
def loop(n: Int): Int =
if (n >= as.length) -1
else if (p(as(n))) n

else loop(n + 1)
We invoke p on each elementin the array
loop(0) to determineif we found theitem.
s

Because the types match up — this
expression is type safe.



Implement a Higher-Order Function

def isSorted[A] (as: Array[A]l, ord: (A,A) => Boolean): Boolean = {

// Implement this on a piece of paper
// Hand in this paper at the end of class



Implement a Higher-Order Function

def isSorted[A] (as: Array[A], ord: (A,A) => Boolean): Boolean = {
def loop(a: Array[A], res: Boolean): Boolean =
if (a.isEmpty) res && true
else if (a.length == 1) res && true
else loop(a.tail, ord(a(@),a(1)))
Here, we create a tail-recursive loop
loop(as, true) function that traversesthe array.

}

We performthe proper case analysis.

We use the ord function to define the
ordering we are interested in.



Anonymous Functions

def isSorted[A] (as: Array[A], ord: (A,A) => Boolean): Boolean = {
def loop(a: Array[A], res: Boolean): Boolean =
if (a.isEmpty) res && true
else if (a.length == 1) res && true
else loop(a.tail, ord(a(@),a(1)))

We use an anonymous function to invoke

loop(as, true)
the isSorted function.

}

Thisis also called a lambda.

isSorted(Array(1,2,3,4), (x: Int,y: Int) => x <= vy)

See Sorted01.scala



Short Definition, Many Possibilities

* The isSorted functionis a short function.
* |t is parameterized by type A to allow for any type of Array[A].

* It is parameterized by a function ord to allow for any ordering
definition.

* This allows for many possible uses of the function isSorted.



Short Definition, One Possibility

* Type and function parameterization often allows for many possible
uses.

* It can also be used to constrainthe implementation to only one
possibility.

Consider the higher-order function for partial application. |t takes a
value and a function of two arguments, and returns a function of one
argument as its result:

def partialll[A,B,Cl(a: A, f: (A,B) =>C): B =>C = 7?7



Short Definition, One Possibility

* How would you go about implementing this higher-order function?

* It turns out that thereis only one implementation that works and it
follows logically from the type signature of the partiall function.

def partialll[A,B,Cl(a: A, f: (A,B) =>C): B =>C = 7?7



Short Definition, One Possibility

* How would you go about implementing this higher-order function?

* |t turns out that thereis only one implementation that works and it
follows logically from the type signature of the partiall function.

 \We know that we need to return a function.

def partiall[A,B,C]l(a: A, f: (A,B) == C): B => C = ???



Short Definition, One Possibility

* How would you go about implementing this higher-order function?

* |t turns out that thereis only one implementation that works and it
follows logically from the type signature of the partiall function.

* We know that we need to return a function.
* We also know that that function takes a parameter of type B.

def partialll[A,B,Cl(a: A, f: (A,B) =>C): B =>C = 7?7



Short Definition, One Possibility

* How would you go about implementing this higher-order function?

* |t turns out that thereis only one implementation that works and it
follows logically from the type signature of the partiall function.

* We know that we need to return a function.
* We also know that that function takes a parameter of type B.
* So, we can easily start off the implementation.

def partialll[A,B,Cl(a: A, f: (A,B) == C): B =>C =
(b: B) => ??7?



Short Definition, One Possibility

* How would you go about implementing this higher-order function?

* |t turns out that thereis only one implementation that works and it
follows logically from the type signature of the partiall function.

* We know that we need to return a function.

* We also know that that function takes a parameter of type B.
* So, we can easily start off the implementation.

 What is the implementation?

def partialll[A,B,Cl(a: A, f: (A,B) == C): B =>C =
(b: B) => ??7?



Short Definition, One Possibility

* How would you go about implementing this higher-order function?

* |t turns out that thereis only one implementation that works and it
follows logically from the type signature of the partiall function.

* We know that we need to return a function.

* We also know that that function takes a parameter of type B.
* So, we can easily start off the implementation.

 What is the implementation?

def partialll[A,B,Cl(a: A, f: (A,B) == C): B =>C =
(b: B) => f(a, b)

See Partial02.scala



How about this function?

The curry function converts a function f of two argumentsinto a
function of one argument that partially applies f.

Again, thereis only one implementation of this.

def curry[A,B,Cl(f: (A,B) => C): A= (B => C) = ???



How about this function?

The curry function converts a function f of two argumentsinto a
function of one argument that partially applies f.

Again, thereis only one implementation of this.

def curryI[A,B,Cl(f: (A,B) => C): A => (B => (C) =
(a: A) => (b: B) => f(a,b)

See Curry03.scala



The real world?

* These functions are interesting, but how do they relate to real-world
programmingin the large?



The real world?

* These functions are interesting, but how do they relate to real-world
programmingin the large?

* It turns out by using functions such as partial and curry, as well as
many others (e.g., compose, map, fold, reduce, zip, ...) you are able to
construct sophisticated programs using functional composition.



The real world?

* These functions are interesting, but how do they relate to real-world
programmingin the large?

* It turns out by using functionssuch as partial and curry, as well as
many others (e.g., compose, map, fold, reduce, zip, ...) you are able to
construct sophisticated programs using functional composition.

* Polymorphic, higher-order functions often end up being extremely
widely applicable, precisely because they say nothing about any
particular domain and are simply abstracting over common patterns
that occur in many contexts.



What about data structures?

e Using pure functionslends itself naturally to immutable data
structures. Pure functions do not change stateand immutable data
structures can’t be modified.

* How might we define a List data structure?

See List04.scala



List Abstract Data Type

* How do we represent a List such that it is immutable?



List Abstract Data Type

* How do we represent a List such that it is immutable?
* We need something that represents the empty list.



List Abstract Data Type

* How do we represent a List such that it is immutable?
* We need something that represents the empty list.
* We need something that represents a non-empty list



List Abstract Data Type

* How do we represent a List such that it is immutable?
* We need something that represents the empty list.
* We need something that represents a non-empty list

sealed trait List[+A]



List Abstract Data Type

* How do we represent a List such that it is immutable?
* We need something that represents the empty list.
* We need something that represents a non-empty list

sealed trait List[+A]

\

A trait thatis “sealed” simply meansthat anythingthat
extends it must be defined in the same file.



List Abstract Data Type

* How do we represent a List such that it is immutable?
* We need something that represents the empty list.
* We need something that represents a non-empty list

sealed trait List[+A]

|

The + in front of the type parameterA is a variance

annotation. In particular, the +A indicates that the type
parameterA is covariant.

That is, if X is a subtype of A then List[X] is a subtype of List[A].



List Abstract Data Type

* How do we represent a List such that it is immutable?
* We need something that represents the empty list.
* We need something that represents a non-empty list

sealed trait List[+A]
case object Nil extends List[Nothing]

Nil represents the empty list.
Nil is an object—there is only one of these. Why?



List Abstract Data Type

* How do we represent a List such that it is immutable?
* We need something that represents the empty list.
* We need something that represents a non-empty list

sealed trait List[+A]
case object Nil extends List[Nothing]

/

Nothingis a subtype of everything. This means that Nil can be
used in the context of any typeof list: List[Int], List[String], etc.



List Abstract Data Type

* How do we represent a List such that it is immutable?
* We need something that represents the empty list.
* We need something that represents a non-empty list

sealed trait List[+A]
case object Nil extends List[Nothing]
case class Cons[+A] (head: A, tail: List[A]) extends List[A]

N\

Consis a case class. We will representa List as a head element
(thedata) and the rest of the list (the tail).



Constructing Lists

* So, lists are represented by a “cons cell”.
How do we create lists then?

val xs = Cons(1l, Cons(2, Cons(3, Nil)))



Constructing Lists

* So, lists are represented by a “cons cell”.
How do we create lists then?

val xs = Cons(1l, Cons(2, Cons(3, Nil)))

Isn’t this rather ugly?

| would think so
How might we have our implementation support this: List(1,2,3)?



a) Createa function called List
b) Create a companion object with an

Constructing Lists apply method?

c) Createanapply method in the List
class?
* So, lists are represented by a “cons cell”. |d) UseScala’s Listimplementation to

How do we create lists then? do this.
e) None of these.

val xs = Cons(1l, Cons(2, Cons(3, Nil)))

Isn’t this rather ugly?

| would think so
How might we have our implementation support this: List(1,2,3)?



The List Companion Object

 Companion objects are perfect for this sort of thing.

Can anyone suggest on how to implement this?
Go ahead, do not be shy ©



The List Companion Object

 Companion objects are perfect for this sort of thing.

object List {
def apply[A]l(as: Ax): List[A] =
if (as.isEmpty) Nil
else Cons(as.head, apply(as.tail: _x))



Let us create a sum method in List

* How would you write a function List.sum that takes a List[Int] and
returns the sum of each Int in the list?

sealed trait List[+A]
case object Nil extends List[Nothing]
case class Cons[+A] (head: A, tail: List[A]) extends List[A]

object List {
def sum(xs: List[Int]): Int = ?7?

}



Let us create a sum method in List

* How would you write a function List.sum that takes a List[Int] and
returns the sum of each Int in the list?

sealed trait List[+A]
case object Nil extends List[Nothing]
case class Cons[+A] (head: A, tail: List[A]) extends List[A]

object List {

def sum(xs: List[Int]): Int = Here is one way of doing
. —_ . it. But, it turns outthere is
if (XS T Nl-l') 0 ) a more elegant way of
else xs.head + sum(xs.tail) expressing this in Scala...




Let us create a sum method in List

* How would you write a function List.sum that takes a List[Int] and
returns the sum of each Int in the list?

sealed trait List[+A]
case object Nil extends List[Nothing]
case class Cons[+A] (head: A, tail: List[A]) extends List[A]

object List {

def sum(xs: List[Int]): Int = xs match { |Pattemmatchingisthe

. _ preferred approach to
case Nil => 0 “match” over data

case Cons(x,xs) => x + sum(xs) structures.

}
}



Let us create a sum method in List

* How would you implement product?

sealed trait List[+A]
case object Nil extends List[Nothing]
case class Cons[+A] (head: A, tail: List[A]) extends List[A]

object List {
def product(xs: List[Doublel): Double = ?7??
¥



Let us create a sum method in List

* How would you implement product?

sealed trait List[+A]
case object Nil extends List[Nothing]
case class Cons[+A] (head: A, tail: List[A]) extends List[A]

object List {
def product(xs: List[Doublel]): Double = xs match {

case Nil => 1.0
The _ pattern matches

case Cons(0.0, ) => 0.0 ! natche
anything. In this case if we
case Cons(x, XS) => X * pl"OdUCt(XS) seea 0.0, thenthe rest of

} the list does not matter.

}



Data Sharing

* When data is immutable, how do we write functionsthat add or
remove elements from a list?

object List {
def add[A] (xs: List[A], e: A): List[A] =
Cons(e, xs)

}

* We need not copy xs, we simply reuse it.
» Sharing of immutable data simplifies code (copying unnecessary)

* Functional data structures are persistent meaning that existing
references are never changed by operationson the data structure.



Data Structures are Persistent

Nil

List(“a”,

i b" i
’

1
Cy

“d”).tail -> List(“b”, “

14
Cy

lldl’)




Data Structures are Persistent

Nil

LiSt("a", "b", "C", “d")-tai-l. 9 LiSt("b", “C", lld")

How would you implement the function List.tail?
See ListO4.scala




Generalizing to Higher-Order Functions

 Remember the List.sum and List.product methods?
* |Is there a common patternthat we could abstract fromboth?



Generalizing to Higher-Order Functions

 Remember the List.sum and List.product methods?
* |Is there a common patternthat we could abstract fromboth?
* Right, they both traversea list to produce a single value.

* What if we could write a function that traverses a list to produce a
single value and use that to implement sum and product?

This is the hallmark of function programming.



foldRight

* The foldRight function does exactlythat — it traverses a list and
produces a final value by combining elements in the list.

object List {
def foldRight[A,B](xs: List[A], z: B)(f: (A,B) == B): B =
xs match {
case Nil => z
case Cons(x, xs) => f(x, foldRight(xs, z)(f))
}

Now, implement sum and productin terms of that...




foldRight

* The foldRight function does exactlythat — it traverses a list and
produces a final value by combining elements in the list.

object List {
def foldRight[A,B](xs: List[A], z: B)(f: (A,B) == B): B =
xs match {
case Nil => z
case Cons(x, xs) => f(x, foldRight(xs, z)(f))
}

def sum(xs: List[Int]) =
foldRight(xs, 0)((x,y) => x + vy)




foldRight unfolded

foldRight(Cons(1, Cons(2, Cons(3, Nil))), 0)((x,y) == x + vy)



foldRight unfolded

foldRight(Cons(1, Cons(2, Cons(3, Nil))), 0)((x,y) == x + vy)

1 + foldRight(Cons(2, Cons(3, Nil)), 0)((x,y) => x + vy)



foldRight unfolded

foldRight(Cons(1, Cons(2, Cons(3, Nil))), 0)((x,y) == x + vy)
1 + foldRight(Cons(2, Cons(3, Nil)), 0)((x,y) => x + vy)

1 + (2 + foldRight(Cons(3, Nil), 0)((x,y) => x + y)



foldRight unfolded

foldRight(Cons(1, Cons(2, Cons(3, Nil))), 0)((x,y) == x + vy)
1 + foldRight(Cons(2, Cons(3, Nil)), 0)((x,y) => x + vy)
1 + (2 + foldRight(Cons(3, Nil), 0)((x,y) => x + y)

1+ (2 + (3 + foldRight(Nil, @) ((x,y) => x + vy)



foldRight unfolded

foldRight(Cons(1, Cons(2, Cons(3, Nil))), 0)((x,y) == x + vy)
1 + foldRight(Cons(2, Cons(3, Nil)), 0)((x,y) => x + vy)

1 + (2 + foldRight(Cons(3, Nil), 0)((x,y) => x + y)

1+ (2 + (3 + foldRight(Nil, 0)((x,y) == x + V)

1+ (2+ (3 + (0))



foldRight unfolded

foldRight(Cons(1, Cons(2, Cons(3, Nil))), 0)((x,y) == x + vy)
1 + foldRight(Cons(2, Cons(3, Nil)), 0)((x,y) => x + vy)

1 + (2 + foldRight(Cons(3, Nil), 0)((x,y) => x + y)

1+ (2 + (3 + foldRight(Nil, @) ((x,y) => x + vy)

1+ (2+ (3 +(0))

6



