CompSci 220

Programming Methodology

12: Functional Data Structures

```
def findFirst[A](as: Array[A], p: A => Boolean): Int = {
    def loop(n: Int): Int =
        if (n >= as.length) -1
        else if (p(as(n))) n
        else loop(n + 1)

    loop(0)
}
```

We use the function **p** to abstract the task of determining what we are looking for.

This is a tail-recursive function – the Scala compiler will translate this into an efficient loop!

Because the types match up – this expression is *type safe*.

Implement a Higher-Order Function

```
def isSorted[A](as: Array[A], ord: (A,A) => Boolean): Boolean = {
    // Implement this on a piece of paper
    // Hand in this paper at the end of class
}
```

Implement a Higher-Order Function

We perform the proper case analysis.

We use the **ord** function to define the ordering we are interested in.

Anonymous Functions

```
def isSorted[A](as: Array[A], ord: (A,A) => Boolean): Boolean = {
    def loop(a: Array[A], res: Boolean): Boolean =
        if (a.isEmpty) res && true
        else if (a.length == 1) res && true
        else loop(a.tail, ord(a(0),a(1)))

        loop(as, true)
}

We use an anonymous function to invoke
the isSorted function.

This is also called a lambda.
```

See Sorted01.scala

isSorted(Array(1,2,3,4), (x: Int,y: Int) \Rightarrow x <= y)

Short Definition, Many Possibilities

- The **isSorted** function is a short function.
- It is parameterized by type A to allow for any type of Array[A].
- It is parameterized by a function **ord** to allow for any ordering definition.

• This allows for many possible uses of the function **isSorted**.

- Type and function parameterization often allows for many possible uses.
- It can also be used to constrain the implementation to only one possibility.

Consider the higher-order function for *partial application*. It takes a value and a function of two arguments, and returns a function of one argument as its result:

def partial1[A,B,C](a: A, f: (A,B) => C): B => C = ???

- How would you go about implementing this higher-order function?
- It turns out that there is only one implementation that works and it follows logically from the type signature of the **partial1** function.

def partial1[A,B,C](a: A, f: (A,B) => C): B => C = ???

- How would you go about implementing this higher-order function?
- It turns out that there is only one implementation that works and it follows logically from the type signature of the **partial1** function.
- We know that we need to return a function.

def partial1[A,B,C](a: A, f: (A,B) => C): B => C = ???

- How would you go about implementing this higher-order function?
- It turns out that there is only one implementation that works and it follows logically from the type signature of the **partial1** function.
- We know that we need to return a function.
- We also know that that function takes a parameter of type B.

```
def partial1[A,B,C](a: A, f: (A,B) => C): B => C = ???
```

- How would you go about implementing this higher-order function?
- It turns out that there is only one implementation that works and it follows logically from the type signature of the **partial1** function.
- We know that we need to return a function.
- We also know that that function takes a parameter of type B.
- So, we can easily start off the implementation.

```
def partial1[A,B,C](a: A, f: (A,B) => C): B => C =
   (b: B) => ???
```

- How would you go about implementing this higher-order function?
- It turns out that there is only one implementation that works and it follows logically from the type signature of the **partial1** function.
- We know that we need to return a function.
- We also know that that function takes a parameter of type B.
- So, we can easily start off the implementation.
- What is the implementation?

```
def partial1[A,B,C](a: A, f: (A,B) => C): B => C =
   (b: B) => ???
```

- How would you go about implementing this higher-order function?
- It turns out that there is only one implementation that works and it follows logically from the type signature of the **partial1** function.
- We know that we need to return a function.
- We also know that that function takes a parameter of type B.
- So, we can easily start off the implementation.
- What is the implementation?

```
def partial1[A,B,C](a: A, f: (A,B) => C): B => C =
   (b: B) => f(a, b)
```

See PartialO2.scala

How about this function?

The **curry** function converts a function f of two arguments into a function of one argument that partially applies f.

Again, there is only one implementation of this.

def curry [A,B,C] (f: (A,B) => C): A => (B => C) = ???

How about this function?

The **curry** function converts a function f of two arguments into a function of one argument that partially applies f.

Again, there is only one implementation of this.

The real world?

• These functions are interesting, but how do they relate to real-world programming in the large?

The real world?

- These functions are interesting, but how do they relate to real-world programming in the large?
- It turns out by using functions such as *partial* and *curry*, as well as many others (e.g., *compose*, *map*, *fold*, *reduce*, *zip*, ...) you are able to construct sophisticated programs using functional composition.

The real world?

- These functions are interesting, but how do they relate to real-world programming in the large?
- It turns out by using functions such as *partial* and *curry*, as well as many others (e.g., *compose*, *map*, *fold*, *reduce*, *zip*, ...) you are able to construct sophisticated programs using functional composition.
- Polymorphic, higher-order functions often end up being extremely widely applicable, precisely because they say nothing about any particular domain and are simply abstracting over common patterns that occur in many contexts.

What about data structures?

 Using pure functions lends itself naturally to immutable data structures. Pure functions do not change state and immutable data structures can't be modified.

• How might we define a List data structure?

See List04.scala

• How do we represent a List such that it is immutable?

- How do we represent a List such that it is immutable?
 - We need something that represents the empty list.

- How do we represent a List such that it is immutable?
 - We need something that represents the empty list.
 - We need something that represents a non-empty list

- How do we represent a List such that it is immutable?
 - We need something that represents the empty list.
 - We need something that represents a non-empty list

sealed trait List[+A]

- How do we represent a List such that it is immutable?
 - We need something that represents the empty list.
 - We need something that represents a non-empty list

sealed trait List[+A]

A trait that is "sealed" simply means that anything that extends it must be defined in the same file.

- How do we represent a List such that it is immutable?
 - We need something that represents the empty list.
 - We need something that represents a non-empty list

sealed trait List[+A]

The + in front of the type parameter A is a variance annotation. In particular, the +A indicates that the type parameter A is covariant.

That is, if X is a subtype of A then List[X] is a subtype of List[A].

- How do we represent a List such that it is immutable?
 - We need something that represents the empty list.
 - We need something that represents a non-empty list

sealed trait List[+A]
case object Nil extends List[Nothing]

Nil represents the empty list.

Nil is an *object* – there is only one of these. Why?

- How do we represent a List such that it is immutable?
 - We need something that represents the empty list.
 - We need something that represents a non-empty list

sealed trait List[+A]
case object Nil extends List[Nothing]

Nothing is a subtype of everything. This means that Nil can be used in the context of any type of list: List[Int], List[String], etc.

- How do we represent a List such that it is immutable?
 - We need something that represents the empty list.
 - We need something that represents a non-empty list

```
sealed trait List[+A]
case object Nil extends List[Nothing]
case class Cons[+A](head: A, tail: List[A]) extends List[A]
```

Cons is a case class. We will represent a List as a head element (the data) and the rest of the list (the tail).

Constructing Lists

• So, lists are represented by a "cons cell". How do we create lists then?

```
val xs = Cons(1, Cons(2, Cons(3, Nil)))
```

Constructing Lists

• So, lists are represented by a "cons cell". How do we create lists then?

```
val xs = Cons(1, Cons(2, Cons(3, Nil)))
```

Isn't this rather ugly?

I would think so

How might we have our implementation support this: List(1,2,3)?

Constructing Lists

• So, lists are represented by a "cons cell". How do we create lists then?

- a) Create a function called List
- b) Create a companion object with an apply method?
- c) Create an apply method in the List class?
- d) Use Scala's List implementation to do this.
- e) None of these.

```
val xs = Cons(1, Cons(2, Cons(3, Nil)))
```

Isn't this rather ugly?

I would think so

How might we have our implementation support this: List(1,2,3)?

The List Companion Object

• Companion objects are perfect for this sort of thing.

Can anyone suggest on how to implement this? Go ahead, do not be shy ©

The List Companion Object

Companion objects are perfect for this sort of thing.

```
object List {
   def apply[A](as: A*): List[A] =
     if (as.isEmpty) Nil
     else Cons(as.head, apply(as.tail: _*))
}
```

 How would you write a function List.sum that takes a List[Int] and returns the sum of each Int in the list?

```
sealed trait List[+A]
case object Nil extends List[Nothing]
case class Cons[+A](head: A, tail: List[A]) extends List[A]
```

```
object List {
  def sum(xs: List[Int]): Int = ???
}
```

 How would you write a function List.sum that takes a List[Int] and returns the sum of each Int in the list?

```
sealed trait List[+A]
case object Nil extends List[Nothing]
case class Cons[+A](head: A, tail: List[A]) extends List[A]
```

```
object List {
  def sum(xs: List[Int]): Int =
    if (xs == Nil) 0
    else xs.head + sum(xs.tail)
}
```

Here is one way of doing it. But, it turns out there is a more elegant way of expressing this in Scala...

 How would you write a function List.sum that takes a List[Int] and returns the sum of each Int in the list?

```
sealed trait List[+A]
case object Nil extends List[Nothing]
case class Cons[+A](head: A, tail: List[A]) extends List[A]

object List {
   def sum(xs: List[Int]): Int = xs match {
     case Nil => 0
        case Cons(x,xs) => x + sum(xs)
   }
}
Pattern matching is the preferred approach to "match" over data structures.
```

How would you implement product?

```
sealed trait List[+A]
case object Nil extends List[Nothing]
case class Cons[+A](head: A, tail: List[A]) extends List[A]

object List {
  def product(xs: List[Double]): Double = ???
}
```

How would you implement product?

```
sealed trait List[+A]
case object Nil extends List[Nothing]
case class Cons[+A](head: A, tail: List[A]) extends List[A]

object List {
    def product(xs: List[Double]): Double = xs match {
        case Nil => 1.0
        case Cons(0.0,_) => 0.0
        case Cons(x,xs) => x * product(xs)
    }

The_pattern matches anything. In this case if we see a 0.0, then the rest of the list does not matter.
```

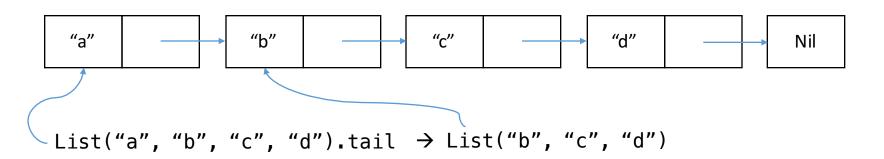
Data Sharing

 When data is immutable, how do we write functions that add or remove elements from a list?

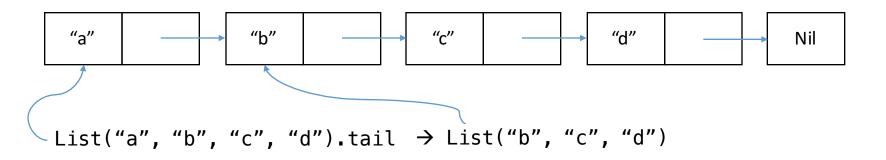
```
object List {
  def add[A](xs: List[A], e: A): List[A] =
   Cons(e, xs)
}
```

- We need not copy xs, we simply reuse it.
- Sharing of immutable data simplifies code (copying unnecessary)
- Functional data structures are *persistent* meaning that existing references are never changed by operations on the data structure.

Data Structures are Persistent



Data Structures are Persistent



How would you implement the function List.tail? *See List04.scala*

Generalizing to Higher-Order Functions

- Remember the List.sum and List.product methods?
- Is there a common pattern that we could abstract from both?

Generalizing to Higher-Order Functions

- Remember the List.sum and List.product methods?
- Is there a common pattern that we could abstract from both?
- Right, they both traverse a list to produce a single value.
- What if we could write a function that traverses a list to produce a single value and use that to implement sum and product?

This is the hallmark of function programming.

foldRight

• The foldRight function does exactly that – it traverses a list and produces a final value by combining elements in the list.

```
object List {
  def foldRight[A,B](xs: List[A], z: B)(f: (A,B) => B): B =
    xs match {
    case Nil => z
    case Cons(x, xs) => f(x, foldRight(xs, z)(f))
  }
}
```

Now, implement sum and product in terms of that...

foldRight

• The foldRight function does exactly that – it traverses a list and produces a final value by combining elements in the list.

```
object List {
    def foldRight[A,B](xs: List[A], z: B)(f: (A,B) => B): B =
        xs match {
        case Nil => z
        case Cons(x, xs) => f(x, foldRight(xs, z)(f))
    }

    def sum(xs: List[Int]) =
        foldRight(xs, 0)((x,y) => x + y)
}
```

foldRight(Cons(1, Cons(2, Cons(3, Nil))), 0)((x,y) => x + y)

```
foldRight(Cons(1, Cons(2, Cons(3, Nil))), \emptyset)((x,y) => x + y)
1 + foldRight(Cons(2, Cons(3, Nil)), \emptyset)((x,y) => x + y)
```

```
foldRight(Cons(1, Cons(2, Cons(3, Nil))), \emptyset)((x,y) => x + y)

1 + foldRight(Cons(2, Cons(3, Nil)), \emptyset)((x,y) => x + y)

1 + (2 + foldRight(Cons(3, Nil), \emptyset)((x,y) => x + y)
```

```
foldRight(Cons(1, Cons(2, Cons(3, Nil))), \emptyset)((x,y) => x + y)

1 + foldRight(Cons(2, Cons(3, Nil)), \emptyset)((x,y) => x + y)

1 + (2 + foldRight(Cons(3, Nil), \emptyset)((x,y) => x + y)

1 + (2 + (3 + foldRight(Nil, \emptyset)((x,y) => x + y)
```

```
foldRight(Cons(1, Cons(2, Cons(3, Nil))), \emptyset)((x,y) => x + y)

1 + foldRight(Cons(2, Cons(3, Nil)), \emptyset)((x,y) => x + y)

1 + (2 + foldRight(Cons(3, Nil), \emptyset)((x,y) => x + y)

1 + (2 + (3 + foldRight(Nil, \emptyset)((x,y) => x + y)

1 + (2 + (3 + (\emptyset))
```

```
foldRight(Cons(1, Cons(2, Cons(3, Nil))), 0)((x,y) => x + y)

1 + foldRight(Cons(2, Cons(3, Nil)), 0)((x,y) => x + y)

1 + (2 + foldRight(Cons(3, Nil), 0)((x,y) => x + y)

1 + (2 + (3 + foldRight(Nil, 0)((x,y) => x + y)

1 + (2 + (3 + (0))
```