CompSci 220

Programming Methodology
16: Understanding FP Error Handling Part 2



Objectives

e Option Composition and Lifting

* For-Comprehension Expansion

* The Either Data Type

* Option and Either in the Standard Library



Examples

* Let us first take a look at some more examples of using Option.



Option Composition and Lifting

* How does Option affect existing code?
* You may have been concerned that Option will “infect” an entire code
base —one can imagine how any callers of methods that take or

return Option will need to be modified to handle either Some or
None.

* Fortunately, this does not happen.

e We can lift ordinary functions to become functions that operateon
Option.



Problem Example

e Consider the math.abs function on Double:

math.abs(v: Double): Double

* What if we wanted to pass an Option to math.abs or pass the result
of the result of math.absto a function to another function that

expects an Option[Double]?

* We “could” pattern match on Option and extract the value before
calling math.abs. Or, we could wrap the result in Some.
But, there is a better way...



Lifting to Option

Here is an example of what we want to do:

val abs0O: Option[Double] => Option[Double] = lift(math.abs)
Here is the type signature of lift:

def lVift[A,B](f: A => B): Option[A] => Option[B] = ??7?

Take out a piece of paper and write out the implementation of /ift.
You should use a functional method from the Option type to do this.



Lifting to Option

Here is an example of what we want to do:

val abs0O: Option[Double] => Option[Double] = lift(math.abs)
Here is the type signature of lift:

def 1ift[A,B](f: A => B): Option[A] => Option[B] = _ map f

See how this works?



Lifting to Option

Here is an example of what we want to do:

val abs0O: Option[Double] => Option[Double] = lift(math.abs)
Here is the type signature of lift:

def 1ift[A,B](f: A => B): Option[A] => Option[B] = _map f

See how this works?
We returna new function by using the _anonymous function syntax



Lifting to Option

Here is an example of what we want to do:

val abs0O: Option[Double] => Option[Double] = lift(math.abs)
Here is the type signature of lift:

def 1ift[A,B](f: A => B): Option[A] => Option[B] = _map f

See how this works?
This maps the first option using function f that is provided to lift.



Lift Design Pattern?

What designh pattern does
the lift function implement?



Lift Design Pattern?

What design pattern does
the lift function implement?




Options and Exceptions

* Imagine you are implementing the logic for a car insurance company’s
website, which contains a page where users can submit a form to
request an instance online quote.

HAVING TROUBLE
FINDING CHEAP
AUTO COVERAGE?

LET US GIVE YOU A
PUSH IN THE RIGHT
DIRECTION...




Options and Exceptions

* Imagine you are implementing the logic for a car insurance company’s
website, which contains a page where users can submit a form to
request an instance online quote.

* We would like to parse the HAVING TROUBLE
information from this form and s isagnpiahiasted

AUTO COVERAGE?
ultimately call our ratefunction.
LET US GIVE YOU A
PUSH IN THE RIGHT
DIRECTION...




Rate Function k !

def insuranceRateQuote(age: Int, numberOfSpeedingTickets: Int): Double

* We want to be able to call this function, but if the user is submitting
their age and number of speeding tickets in a web form, these fields
will arrive as simple strings that we have to (try to) parse into
integers.



Rate Function / k |

age = “42”

parse

def insuranceRateQuote(age: Int, numberOfSpeedingTickets: Int): Double

* We want to be able to call this function, but if the user is submitting
their age and number of speeding tickets in a web form, these fields
will arrive as simple strings that we have to (try to) parse into
integers.



Rate Function '
F———

age = “42” tickets = “three”

% e—

parse parse | EXCEPTION!

\

def insuranceRateQuote(age: Int, numberOfSpeedingTickets: Int): Double

* We want to be able to call this function, but if the user is submitting
their age and number of speeding tickets in a web form, these fields
will arrive as simple strings that we have to (try to) parse into
integers.



Rate Function '
F———

age = “42” tickets = “three”

% e—

parse parse | EXCEPTION!

\

def insuranceRateQuote(age: Int, numberOfSpeedingTickets: Int): Double

* So, what if parse throws an exception?

e “42” tolntis ok, but “three”.tolntthrows a NumberFormatException!
* This does not fit well into our functional model.

* We need a way to convert an Exceptioninto an Option.



Exceptions to Options

* |deally, we want to be able to do something like this:

Try {
“42" . toInt

s
// Try { .. } should evaluate to Option

* Have we seen a way to do this before?
 What language technique can we use to implement this?



Implementing Try

* Here is the signature:

def Try[A]l(block: => A): Option[A]

* Spend a few minutes to see if you can implement this.
* The given block could possibly throw an exception.



Implementing Try

* Here is the signature:

def Try[A] (block: => A): Option[A] =
try Some(a)
catch { case e: Exception => None }

e Spend a few minutes to see if you can implement this.
* The given block could possibly throw an exception.



Implement parselnsuranceRateQuote

* Ok, so now we can convert exceptionsinto Options.

* Let us implement a function to parse strings into ints from our
insurance website and call insuranceRateQuote. Try it!

def parseInsuranceRateQuote(age: String,
numberOfSpeedingTickets: String): Option[Double] = ?77??

def insuranceRateQuote(age: Int, numberOfSpeedingTickets: Int): Double



Implement parselnsuranceRateQuote

e That wasn’t so hard.
* But, we have a problem.

def parseInsuranceRateQuote(age: String,
numberOfSpeedingTickets: String): Option[Double] = ?77??

val optAge = Try { age.tolInt }
val optTickets = Try { numberOfSpeedingTickets.toInt }
insuranceRateQuote(optAge, optTickets)

}

def insuranceRateQuote(age: Int, numberOfSpeedingTickets: Int): Double



Implement parselnsuranceRateQuote

e That wasn’t so hard.
* But, we have a problem.
* It doesn’t compile!

def parseInsuranceRateQuote(age: String,
numberOfSpeedingTickets: String): Option[Double] = ?77??

val optAge = Try { age.tolInt }
val optTickets = Try { numberOfSpeedingTickets.toInt }
insuranceRateQuote(optAge, optTickets)

}

def insuranceRateQuote(age: Int, numberOfSpeedingTickets: Int): Double



Implement parselnsuranceRateQuote

* It doesn’t compile because there is a type error.
* insuranceRateQuote expectsInts, but we are giving it Options.
* How do we solve this one?

def parseInsuranceRateQuote(age: String,
numberOfSpeedingTickets: String): Option[Double] = ?77??

val optAge = Try { age.tolInt }
val optTickets = Try { numberOfSpeedingTickets.toInt }
insuranceRateQuote(optAge, optTickets)

}

def insuranceRateQuote(age: Int, numberOfSpeedingTickets: Int): Double



Implement parselnsuranceRateQuote

* What we need is a function extracts the two Ints (age & tickets) from
the Option values, plugs them in to the insuranceRateQuote function,
and then returns an Option

def parseInsuranceRateQuote(age: String,
numberOfSpeedingTickets: String): Option[Double] = ?77??

val optAge = Try { age.tolInt }
val optTickets = Try { numberOfSpeedingTickets.toInt }
insuranceRateQuote(optAge, optTickets)

}

def insuranceRateQuote(age: Int, numberOfSpeedingTickets: Int): Double



Implement map?2

* Write a generic function map2 that combines two Option values using a
binary function. If either Option value is None, then the return value is
too. Here is its signature:

def map2[A,B,Cl(a: Option[A], b: Option[B])(f: (A,B) => C): Option[C] = ?7??



Implement map?2

* Write a generic function map2 that combines two Option values using a
binary function. If either Option value is None, then the return value is
too. Here is its signature:

def map2[A,B,C](a: Option[A], b: Option[B])(f: (A,B) => C): Optionl[C] =
(a,b) match {
case (Some(x), Some(y)) => Some(f(x,y))
case _ => None



Implement map?2

* Write a generic function map2 that combines two Option values using a
binary function. If either Option value is None, then the return value is
too. Here is its signature:

deg maEZ[A,B,C](a: Option[A], b: Option[B])(f: (A,B) => C): Option[C] =
or
X <— a
y <-b
} yield f(x,y)



Fixing The Problem: map2

* What we need is a function extracts the two Ints (age & tickets) from
the Option values, plugs them in to the insuranceRateQuote function,
and then returns an Option

def parseInsuranceRateQuote(age: String,
numberOfSpeedingTickets: String): Option[Double] = ?77??

val optAge = Try { age.tolInt }
val optTickets = Try { numberOfSpeedingTickets.toInt }
insuranceRateQuote(optAge, optTickets)

}

def insuranceRateQuote(age: Int, numberOfSpeedingTickets: Int): Double



Fixing The Problem: map2

* What we need is a function extracts the two Ints (age & tickets) from
the Option values, plugs them in to the insuranceRateQuote function,
and then returns an Option

def parseInsuranceRateQuote(age: String,
numberOfSpeedingTickets: String): Option[Double] = ?77??

val optAge = Try { age.tolInt }
val optTickets = Try { numberOfSpeedingTickets.toInt }
map2(optAge, optTickets) (insuranceRateQuote)

}

def insuranceRateQuote(age: Int, numberOfSpeedingTickets: Int): Double



Either Data Type

e Option is great for many cases.

* However, what if you need to indicatethe error that occurred?
* Option, just gives us None

* For that, we have the Either data type:

sealed trait Either[+E, +A]
case class Left[+E](value: E) extends Either[E,Nothing]

case class Right[+A](value: A) extends Either[Nothing,Al



Revisiting the Mean Function with Either

* We had this definition for mean using Option:

def mean(xs: Seq[Double]): Option[Double] =
if (xs.isEmpty) None
else Some(xs.sum / xs.length)

We can easily convert this to use the Either type.



Revisiting the Mean Function with Either
* We had this definition for mean using Option:

def mean(xs: Seq[Double]): Either[String,Double] =
if (xs.isEmpty) Left(“mean of empty list!”)
else Right(xs.sum / xs.length)



Exceptions to Eithers
 Sometimes, we want to include more information about the error:

def safeDiv(x: Int, y: Int): Either[Exception,Int] =
try Right(x / vy)
catch { case e: Exception => Left(e) }



Exceptions to Eithers — With Try

* Now, we can generalize this:

def Try[Al(a: => A): Either[Exception,A] =
try Right(a)
catch { case e: Exception => Left(e) }



