CompSci 220

Programming Methodology

19: Introduction to Regular Expressions

based on slides by Mehryar Mohri, NYU

Objectives

* Learn Regular Expressions
* What are they?
e Pattern matching text.
* Meta characters.

* Allow you to search for text in files

* The grep command

What is a Regular Expression?

* A regular expression (regex) describes a set of possible input strings.

* Regularexpressions descend from a fundamental conceptin
Computer Science called finite automata theory.

* Regularexpressions are endemic to Unix
* Vim, ed, sed, and emacs
e awk, tcl, perl, and python
e grep, egrep, fgrep
e compilers

OH NO! THE KILLER || BUT TO FIND THEM WED HAVE TO SEARCH
\WHENEVER T LEARN A‘{ MUST HAVE ROLOWED)| | THROUGH 200 MB OF EMAILS LOOKING FOR

Regular EXPresSioNs (i o] [oot || remmc arvees e whaioass

il

SCENARI0S WHERE (T
LETS ME SAVE THE DAY.

I

* The simplest regular

expressions are a string of
literal char rsto match.
teral charactersto @me {)m;gfgjgg/
* The string matches the regular %i ai X
expression if it contains the

-

ufil)

substring.

Z

wlg U

reqular expression

———————

UNIX Tools racks; match

UNIX Tools su@cks@ match

UNIX Tools is okay. nomatch

Regular Expressions

* A regular expression can match a string in more than one place.

regular expression . p p | e

Match 1 Match 2

Regular Expressions Meta Characters

* The . regular expression can be used to match any character.

regular expression U

Match 1 Match 2

Regular Expressions Character Classes

* Characterclasses [] can be used to match any specific set of
characters.

regular expression b [e O r] d t

Regular Expressions Character Classes

* Character classes can be negated with the [*] syntax.

regular expression b [A eo] d t

Match 1

More About Character Classes

* Basics
* [aeiou] will match any of the characters a, e, i, 0, or u
* [mN]ohri will match mohri or Mohri

* Ranges can also be specified in character classes
* [1-9] is the same as [123456789]
* [abcde] is equivalent to [a-€e]

* You can combine them
* [abcdel123456789] is equivalent to [a-e1-9]

* Note that the — character has a special meaning in a character class

but only if it is used in a range.
e [-123] would match the characters -, 1, 2, or 3.

Named Character Classes

 Commonly used character classes can be referred to by name:
 alpha, lower, upper, alnum, digit, punct, cntrl

e Syntax: [:name:]

e [a-zA-Z] [[:alpha:]]
e [a-zA-Z0-9] [[:alnum:]]
e [45a-7] [45[:lower:]]

* Important for portability across languages.

Anchors

* Anchors are used to match at the beginning or end of a line (or both).
* A means beginning of the line.

* S means end of the line.

regular expression ———| N\ b [eor] po)

beatia brat on a boat

regular expression ——— b [EOr] a |t

match Aword$ Ag

useful RE patterns

Repetition

*The * is used to define zero or more occurrences
of the single regular expression preceding it.

regular expression y 3 b S y

match
N N
regular expression h e | %
Helllllooooo/in there!
match P

useful RE patterns

Repetition Ranges

* Ranges can also be specified

* { } notation can specify a range of repetitions for the immediately preceding
regular expression.

* {n} means exactly n occurrences.
* {n, } means at least n occurrences.
* {n,m} means at least n occurrences but not more than m occurrences.

* Example:
* .{0,} same as .*
* A{2,}same as aaa*™

Subexpressions

* If you want to group part of an expression so that * or { } applies to
more than just the previous character, use () notation.

* Subexpressions are treated like a single character.
* a* matches 0 or more occurrences of a.
* abc* matches ab, abc, abcc, abccg, ...
* (abc)* matches abc, abcabc, abcabcabe, ...
* (abc){2,3} matches abcabc or abcabcabc

grep

* grep comes from the ed (Unix text editor) search command
“global regular expression print” or g/re/p.

* This was such a useful command that it was written as a standalone
utility.

* There are two other variants, egrep and fgrep, that comprise the grep
family.

* grep is the answer to the moments where you know you want the file
that contains a specific phrase but you can’t remember its name.

Family Differences

 grep — uses regular expressions for pattern matching.

 fgrep —file grep, does not use regular expressions, only matches fixed
strings but can get search strings from a file.

* egrep— extended grep, uses a more powerful set of regular
expressions (but does not support back referencing), generally the
fastest member of the grep family.

* agrep — approximategrep, not standard.

Syntax

* Regular expression concepts we have seen so far are common
to grep and egrep.

* grep and egrep have different syntax

* Major syntaxdifferences:

 grep:\(and), \{ and \}
e egrep:(and), {and }

Protecting Regex Meta Characters

 Since many of the special characters used in regexs also have special
meaning to the shell, it’sa good idea to get in the habit of single
quoting your regexs.

* This will protect any special characters from being operated on by the shell.

* |f you habitually do it, you won’t have to worry about when it is necessary.

Escaping Special Characters

* Even though we are single quoting our regexs so the shell won’t
interpret the special characters,some characters are special to grep
(e.g., *and .)

* To get literal characters, we escape the character with \ (backslash)

» Suppose we want to search for the charactersequence ‘a*b™*’

* Unless we do something special, this will match zero or more ‘a’s followed by
zero or more ‘b’s, not what we want.

* a*b* will fix this — now the asterisk is treated as regular characters.

egrep: Alternation

* Regex also provides an alternation character | for matchingone or
another expression.
* (T|Fl)an will match ‘Tan’ or ‘Flan’

* MFrom|Subject): will match the From and Subject lines of a typical email
It matches a beginning line followed by either the characters ‘From’ or
‘Subject’ followed by a .’

» Subexpressions are used to limit the scope of alternation

e At(ten|nine)tion then matches “Attention” or “Atninetion”, not “Attion” or
“ninetion” as would happen without the parenthesis: Atten|ninetion

egrep: Repetition Shorthands

* The * (star) has already been seen to specify zero or more
occurrences of the immediately preceding character

* The + (plus) means “one more more”
* abc+d will match abcd, abced, abccccccceced, etc.
e But, it will not match abcd
* Equivalent to {1,}

egrep: Repetition Shorthands

* The ? (question mark) specifies an optional character, the single
characterthatimmediately precedes it.
 July? will match Jul or July
* Equivalent to {0,1}
* Also equivalent to (Jul|July)

 The *, ?, and + are known as quantifiers because they specify the
guantity of a match.

* Quantifiers can also be used with subexpressions:
* (a*c)+ will match c, ac, aac, or aacaacac
* But, will not match a or the blank line

egrep: Back References

* Sometimes it is handy to be able to refer to a match that was made
earlier in a regular expression.

* This is does using backreferences:
* \n is the back reference specifier, where nis a number

* Looks for the nt" subexpression

* For example, to find if the first word of a line is the same as the last:
* "([[:alpha:]1{1,}) .* \1$
e The "([[:alpha:]1]{1,}) matches one or more letters

Practical Regular Expressions

* Variable names in C- or Java-like languages
* [a-zZA-Z][a-2A-Z 0-9]*

* Dollar amount with optional cents
e \$[0-9]+(\.[0-9][0-9])7?

* Time of day
* (1[012]1][1-9]1):[0-5][0-9] (am|pm)

e HTML headers <h1>, <H1>, <h2>, ...
* <[hH][1-6]>

Exercise

* Write a regular expression matching all words with an upper case Z.

Exercise

* Write a regular expression matching all words with an upper case Z.

egrep ‘7’ words.txt

Exercise

* Write a regular expression matching all words that begin with an
upper case Z at the start of a line.

Exercise

* Write a regular expression matching all words that begin with an
upper case Z at the start of a line.

egrep ‘Z’ words.txt

Exercise

* Write a regular expression matching all words that begin with an
upper case Z at the end of a line.

Exercise

* Write a regular expression matching all words that begin with an
upper case Z at the end of a line.

egrep ‘ZS’ words.txt

Exercise

* Write a regular expression that begins with a ‘t’ followed by a single
character followed by an ‘m’ at the end of the line

Exercise

* Write a regular expression that begins with a ‘t’ followed by a single
character followed by an ‘m’ at the end of the line

egrep ‘t.mS’ words.txt

Exercise

* Write a regular expression that matches all words of exactly length 4.

Exercise

* Write a regular expression that matches all words of exactly length 4.

egrep ‘A....S’words.txt

egrep ‘.{4}S’words.txt

Exercise

* Write a regular expression that matches all words that begin with a ‘t’
and end with an ‘m’ and are exactly 5 characterslong.

Exercise

* Write a regular expression that matches all words that begin with a ‘t’
and end with an ‘m’ and are exactly 5 characterslong.

egrep ‘Mt.{3}mS’ words.txt

Exercise

* Write a regular expression that matches all words that begin with a
‘q’, followed by 0 or more characters, followed by one or more ‘7,
followed by zero or more characters, followed by one or more ‘I’
(lowercase L), followed by a ‘y’ as the last character

Exercise

* Write a regular expression that matches all words that begin with a
‘q’, followed by 0 or more characters, followed by one or more ‘7,
followed by zero or more characters, followed by one or more ‘I’
(lowercase L), followed by a ‘y’ as the last character

egrep ‘q.*z+.*l+yS’ words.txt

Exercise

* Write a regular expression that matches all words that start with

’

either an ‘@’,’b’, or ’c’, followed by at least one vowel, followed by X/,
‘v’, or ‘2" at the end of the line.

Exercise

* Write a regular expression that matches all words that start with

either an ‘@’,’b’, or ’c’, followed by at least one vowel, followed by X/,
‘v’, or ‘2" at the end of the line.

egrep ‘Ma-c][aeiou]+[x-z]S’ words.txt

Exercise

* Write a regular expression that matches all words that begin with the
words ‘dog’ or ‘cat’, followed by any character, followed by ‘th’ or ‘ng’
at the end of the line.

Exercise

* Write a regular expression that matches all words that begin with the
words ‘dog’ or ‘cat’, followed by any character, followed by ‘th’ or ‘ng’
at the end of the line.

egrep ‘“dog|cat).*(th|ng)S’ words.txt

